
Polyspace® Bug Finder™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Option Descriptions
1

Target operating system (C/C++) . 1-3
Settings . 1-3
Dependencies . 1-4
Command-Line Information . 1-4

Target processor type (C) . 1-5
Settings: . 1-5
Tips . 1-6
Command-Line Information . 1-6

Generic target options (C/C++) . 1-8
Command-Line Options . 1-8

Dialect (C) . 1-12
Settings . 1-12
Dependency . 1-13
Limitations . 1-13
Command-Line Information . 1-14

Sfr type support (C) . 1-15
Settings . 1-15
Dependency . 1-15
Command-Line Information . 1-15

Division round down (C) . 1-16
Settings . 1-16
Command-Line Information . 1-16

Enum type definition (C) . 1-17
Settings . 1-17
Command-Line Information . 1-17

iv Contents

Signed right shift (C) . 1-18
Settings . 1-18
Command-Line Information . 1-18

Preprocessor definitions (C/C++) . 1-19
Settings . 1-19
Tips . 1-19
Command-Line Information . 1-20

Disabled preprocessor definitions (C/C++) 1-21
Settings . 1-21
Command-Line Information . 1-21

Code from DOS or Windows file system (C/C++) 1-22
Settings . 1-22
Command-Line Information . 1-22

Command/script to apply to preprocessed files (C/C++) . . . 1-23
Example Script . 1-23
Command-Line Information . 1-24

Include (C/C++) . 1-25
Settings . 1-25
Tips . 1-25
Command-Line Information . 1-25

Include folders (C/C++) . 1-26
Settings . 1-26
Command-Line Information . 1-26

Variable/function range setup (C/C++) 1-27
Settings . 1-27
Command-Line Information . 1-27

Functions to stub (C) . 1-28
Settings . 1-28
Command-Line Information . 1-28

Multitasking (C/C++) . 1-29
Settings . 1-29
Command-Line Information . 1-29

v

Entry points (C/C++) . 1-30
Settings . 1-30
Dependencies . 1-30
Tips . 1-30
Command-Line Information . 1-30

Critical section details (C/C++) . 1-32
Settings . 1-32
Dependencies . 1-32
Tips . 1-32
Command-Line Information . 1-32

Temporally exclusive tasks (C/C++) . 1-34
Settings . 1-34
Dependencies . 1-34
Command-Line Information . 1-34

Check MISRA C:2004 . 1-36
Settings . 1-36
Tips . 1-37
Command-Line Information . 1-37

Check MISRA AC AGC . 1-38
Settings . 1-38
Tips . 1-39
Command-Line Information . 1-39

Check MISRA C:2012 . 1-40
Settings . 1-40
Tips . 1-41
Command-Line Information . 1-41

Use generated code requirements (C) 1-42
Settings . 1-42
Dependency . 1-43
Command-Line Information . 1-43

Check custom rules (C/C++) . 1-44
Settings . 1-44
Command-Line Information . 1-45

Files and folders to ignore (C) . 1-47
Settings . 1-47

vi Contents

Command-Line Information . 1-47

Effective boolean types (C) . 1-48
Settings . 1-49
Dependencies . 1-49
Command-Line Information . 1-49

Allowed pragmas (C) . 1-50
Settings . 1-50
Dependencies . 1-50
Command-Line Information . 1-50

Find defects (C/C++) . 1-51
Settings . 1-51
Command-Line Information . 1-51

Generate report (C/C++) . 1-53
Settings . 1-53
Tips . 1-53
Command-Line Information . 1-53

Report template (C/C++) . 1-55
Settings . 1-55
Dependencies . 1-56
Command-Line Information . 1-56

Output format (C/C++) . 1-57
Settings . 1-57
Tips . 1-57
Dependencies . 1-57
Command-Line Information . 1-57

Batch (C/C++) . 1-59
Settings . 1-59
Command-Line Information . 1-60

Add to results repository (C/C++) . 1-61
Settings . 1-61
Dependency . 1-61
Command-Line Information . 1-61

Calculate Code Metrics (C/C++) . 1-62
Settings . 1-62

vii

Command-Line Information . 1-62

Command/script to apply after the end of the code
verification (C/C++) . 1-63

Settings . 1-63
Command-Line Information . 1-63

Other (C) . 1-64
-extra-flags . 1-64
-c-extra-flags . 1-64
-cfe-extra-flags . 1-65
-il-extra-flags . 1-65

Termination functions (C) . 1-66
Settings . 1-66
Command-Line Information . 1-66

Initialization functions (C) . 1-67
Settings . 1-67
Command-Line Information . 1-67

Step functions (C) . 1-68
Settings . 1-68
Tips . 1-68
Command-Line Information . 1-69

Parameters (C) . 1-70
Settings . 1-70
Command-Line Information . 1-70

Inputs (C) . 1-72
Settings . 1-72
Command-Line Information . 1-72

Verify module (C) . 1-74
Settings . 1-74
Command-Line Information . 1-74

viii Contents

Option Descriptions for C++ Code
2

Target processor type (C++) . 2-2
Settings . 2-2
Tips . 2-3
Command-Line Information . 2-3

Dialect (C++) . 2-4
Settings . 2-4
Dependencies . 2-5
Limitations . 2-5
Command-Line Information . 2-7

C++11 Extensions (C++) . 2-9
Settings . 2-9
Dependencies . 2-9
Command-Line Information . 2-9

Block char16/32_t types (C++) . 2-10
Settings . 2-10
Dependencies . 2-10
Command-Line Information . 2-10

Pack alignment value (C++) . 2-11
Settings . 2-11
Dependencies . 2-11
Command-Line Information . 2-11

Import folder (C++) . 2-12
Settings . 2-12
Dependencies . 2-12
Command-Line Information . 2-12

Ignore pragma pack directives (C++) 2-13
Settings . 2-13
Dependencies . 2-13
Command-Line Information . 2-13

Support managed extensions (C++) . 2-14
Settings . 2-14
Dependencies . 2-14

ix

Command-Line Information . 2-14

Enum type definition (C++) . 2-15
Settings . 2-15
Command-Line Information . 2-15

Management of scope of 'for loop' variable index (C++) . . . 2-16
Settings . 2-16
Command-Line Information . 2-16

Management of wchar_t (C++) . 2-17
Settings . 2-17
Command-Line Information . 2-17

Set wchar_t to unsigned long (C++) 2-18
Settings . 2-18
Command-Line Information . 2-18

Set size_t to unsigned long (C++) . 2-19
Settings . 2-19
Command-Line Information . 2-19

Ignore link errors (C++) . 2-20
Settings . 2-20
Command-Line Information . 2-20

Functions to stub (C++) . 2-21
Settings . 2-21
Command-Line Information . 2-21

Check MISRA C++ rules . 2-23
Settings . 2-23
Command-Line Information . 2-24

Check JSF C++ rules . 2-25
Settings . 2-25
Tips . 2-26
Command-Line Information . 2-26

Files and folders to ignore (C++) . 2-27
Settings . 2-27
Command-Line Information . 2-27

x Contents

Other (C++) . 2-28
-cpp-extra-flags flag . 2-28
-il-extra-flags flag . 2-28

Termination functions (C++) . 2-29
Settings . 2-29
Tips . 2-29
Command-Line Information . 2-29

Initialization functions (C++) . 2-31
Settings . 2-31
Command-Line Information . 2-31

Step functions (C++) . 2-32
Settings . 2-32
Tips . 2-32
Command-Line Information . 2-32

Parameters (C++) . 2-34
Settings . 2-34
Command-Line Information . 2-34

Inputs (C++) . 2-36
Settings . 2-36
Command-Line Information . 2-36

Verify module (C++) . 2-38
Settings . 2-38
Command-Line Information . 2-38

xi

Polyspace Command-Line Options
3

Checks
4

Functions
5

MISRA C 2012
6

Custom Coding Rules
7

Group 1: Files . 7-2

Group 2: Preprocessing . 7-3

Group 3: Type definitions . 7-4

Group 4: Structures . 7-5

Group 5: Classes (C++) . 7-6

Group 6: Enumerations . 7-7

Group 7: Functions . 7-8

Group 8: Constants . 7-9

xii Contents

Group 9: Variables . 7-10

Group 10: Name spaces (C++) . 7-11

Group 11: Class templates (C++) . 7-12

Group 12: Function templates (C++) 7-13

Code Metrics
8

1

Option Descriptions

• “Target operating system (C/C++)” on page 1-3
• “Target processor type (C)” on page 1-5
• “Generic target options (C/C++)” on page 1-8
• “Dialect (C)” on page 1-12
• “Sfr type support (C)” on page 1-15
• “Division round down (C)” on page 1-16
• “Enum type definition (C)” on page 1-17
• “Signed right shift (C)” on page 1-18
• “Preprocessor definitions (C/C++)” on page 1-19
• “Disabled preprocessor definitions (C/C++)” on page 1-21
• “Code from DOS or Windows file system (C/C++)” on page 1-22
• “Command/script to apply to preprocessed files (C/C++)” on page 1-23
• “Include (C/C++)” on page 1-25
• “Include folders (C/C++)” on page 1-26
• “Variable/function range setup (C/C++)” on page 1-27
• “Functions to stub (C)” on page 1-28
• “Multitasking (C/C++)” on page 1-29
• “Entry points (C/C++)” on page 1-30
• “Critical section details (C/C++)” on page 1-32
• “Temporally exclusive tasks (C/C++)” on page 1-34
• “Check MISRA C:2004” on page 1-36
• “Check MISRA AC AGC” on page 1-38
• “Check MISRA C:2012” on page 1-40
• “Use generated code requirements (C)” on page 1-42
• “Check custom rules (C/C++)” on page 1-44

1 Option Descriptions

1-2

• “Files and folders to ignore (C)” on page 1-47
• “Effective boolean types (C)” on page 1-48
• “Allowed pragmas (C)” on page 1-50
• “Find defects (C/C++)” on page 1-51
• “Generate report (C/C++)” on page 1-53
• “Report template (C/C++)” on page 1-55
• “Output format (C/C++)” on page 1-57
• “Batch (C/C++)” on page 1-59
• “Add to results repository (C/C++)” on page 1-61
• “Calculate Code Metrics (C/C++)” on page 1-62
• “Command/script to apply after the end of the code verification (C/C++)” on page

1-63
• “Other (C)” on page 1-64
• “Termination functions (C)” on page 1-66
• “Initialization functions (C)” on page 1-67
• “Step functions (C)” on page 1-68
• “Parameters (C)” on page 1-70
• “Inputs (C)” on page 1-72
• “Verify module (C)” on page 1-74

 Target operating system (C/C++)

1-3

Target operating system (C/C++)
Specify the operating system of your target application. This option is available on the
Target & Compiler node in the Configuration pane.

This information allows the corresponding system definitions to be used during
preprocessing to analyze the included files properly.

A generic set of includes is provided with Polyspace®. These are automatically included
when the operating system is set to no-predefined-OS or Linux. For projects
developed for other operating systems, analyze these projects using the corresponding
include files for that operating system.

Settings

Default: no-predefined-OS

no-predefined-OS

Analyzes with a general operating system set up. Use with preprocessor macros (-U
or -D) to specify the system flags at compilation time.

Linux

Analyzes with the Linux® system definitions.
Solaris

Analyzes with the Solaris™ system definitions.

This option requires you to add a path to the Solaris include folder in your project, or
use the -I option at the command line.

VxWorks

Analyzes with the VxWorks® system definitions.

This option requires you to add a path to the VxWorks include folder in your project,
or use the -I option at the command line.

Visual

Analyzes with the Visual Studio® system definitions. Used for Microsoft® Windows®

systems.

This option requires you to add a path to the Visual Studio include folder in your
project, or use the -I option at the command line.

1 Option Descriptions

1-4

Dependencies

Setting this parameter changes the available Dialect options. All options are available
with the no-predefined-OS option. The other operating systems only show usable
dialects for that system.

Command-Line Information
Parameter: -OS-target
Value: no-predefined-OS | Linux | Solaris | VxWorks | Visual
Default: no-predefined-OS
Example: polyspace-bug-finder-nodesktop -os-target Linux

See Also
“Target processor type (C)” on page 1-5 | “Dialect (C)” on page 1-12 | “Dialect (C
++)” on page 2-4

Related Examples
• “Specify Analysis Options”

More About
• “Compile Operating System-Dependent Code”

 Target processor type (C)

1-5

Target processor type (C)

Specify the target processor type. This option is available on the Target & Compiler
node in the Configuration pane.

This determines the size of fundamental data types and the endianess of the target
machine. You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

Settings:

Default: i386

You can modify some default attributes by selecting the browse button to the right of
the Target processor type drop-down menu. The optional settings for each target are
shown in [brackets] in the table.

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68k /

ColdFirea
8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 40b 32 signed Little 32

sharc21x6132 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
NEC-V850 8 16 32 32 32 32 32 64 32 signed Little 32 [16,

8]

hc08c 8 16 16
[32]

32 32 32 32 [64] 32 [64] 16d unsigned Big 32 [16]

hc12 8 16 16
[32]

32 32 32 32 [64] 32 [64] 326 signed Big 32 [16]

mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32 [16]

1 Option Descriptions

1-6

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

c18 8 16 16 32
[24]e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]

64 32 64 128 64 signed Little 64 [32]

mcpu...

(Advanced)f
8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32 [16,
8]

a. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
b. Operations on long double values will be imprecise.
c. Non ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not

taken into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24-bits.
f. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets.

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mpcu generic target processor. If your target processor
does not match the characteristics of a processor described above, contact MathWorks®

technical support for advice.

Command-Line Information
Parameter: -target
Value: i386 | m68k | powerpc | c-167 | x86_64 | tms320c3x |
sharc21x61 | necv850 | hc08 | hc12 | mpc5xx | c18 | mpcu

Default: i386
Example: polyspace-bug-finder-nodesktop -lang c -target m68k

See Also
“Generic target options (C/C++)” on page 1-8

Related Examples
• “Specify Analysis Options”

 Target processor type (C)

1-7

• “Modify Predefined Target Processor Attributes”
• “Specify Generic Target Processors”

1 Option Descriptions

1-8

Generic target options (C/C++)

The Generic target options dialog box is only available when you select a mcpu target
for Target processor type. The Target processor type option is available on the
Target & Compiler node in the Configuration pane.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target — e.g., MyTarget.

The generic target option is incompatible with either:

• Target operating system set to Visual
• Dialect set to visual*

That new target is added to the Target processor type option list. The default
characteristics of the new target are (using the type [size, alignment] format):

• char [8, 8], char [16,16]
• short [8,8], short [16, 16]
• int [16, 16]
• long [32, 32], long long [32, 32]
• float [32, 32], double [32, 32], long double [32, 32]
• pointer [16, 16]
• char is signed
• little-endian

Changing the genetic target has consequences for:

• Detection of overflow
• Computation of sizeof objects

Command-Line Options

When using the command line, specify your target with the other target specification
options.

 Generic target options (C/C++)

1-9

Option Description Available
With...

Example

-little-endian Little-endian architectures
are Less Significant byte First
(LSF). For example: i386.

Specifies that the less
significant byte of a short
integer (e.g. 0x00FF) is stored
at the first byte (0xFF) and
the most significant byte
(0x00) at the second byte.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

little-endian

-big-endian Big-endian architectures are
Most Significant byte First
(MSF). For example: SPARC,
m68k.

Specifies that the most
significant byte of a short
integer (e.g. 0x00FF) is stored
at the first byte (0x00) and the
less significant byte (0xFF) at
the second byte.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

big-endian

-default-

sign-of -

char [signed|

unsigned]

Specify default sign of char.

signed: Specifies that char
is signed, overriding target’s
default.

unsigned: Specifies thatchar
is unsigned, overriding
target’s default.

All targets polyspace-bug-finder-

nodesktop -default-sign-

of-char unsigned -target

mcpu

-char-is-16bits char defined as 16 bits and
all objects have a minimum
alignment of 16 bits

Incompatible with -short-
is-8bits and -align 8

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

char-is-16bits

1 Option Descriptions

1-10

Option Description Available
With...

Example

-short-is-8bits Define short as 8 bits,
regardless of sign

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

short-is-8bits

-int-is-32bits Define int as 32 bits,
regardless of sign. Alignment
is also set to 32 bits.

mcpu,
hc08,
hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

long-long-is-64bits

-long-long-is

-64bits

Define long long as 64 bits,
regardless of sign. Alignment
is also set to 64 bits.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

long-long-is-64bits

-double-is

-64bits

Define double and long
double as 64 bits, regardless
of sign. Alignment is also set
to 64 bits.

mcpu,
sharc21x61,
hc08,
hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

double-is-64bits

-pointer-is

-32bits

Define pointer as 32 bits,
regardless of sign. Alignment
is also 32 bits.

mcpu polyspace-bug-finder-

nodesktop -target mcpu -

pointer-is-32bits

-align [32|16|

8]

Specifies the largest alignment
of struct or array objects to the
32, 16 or 8 bit boundaries.

Consequently, the array
or struct storage is strictly
determined by the size of
the individual data objects
without member and end
padding.

mcpu,

Only 16
or 32 bits
for: hc08,
hc12,
mpc5xx

polyspace-bug-finder-

nodesktop -target mcpu -

align 16

See Also
“Target processor type (C)” on page 1-5 | “Target processor type (C++)” on page 2-2

Related Examples
• “Specify Generic Target Processors”

 Generic target options (C/C++)

1-11

More About
• “Common Generic Targets”

1 Option Descriptions

1-12

Dialect (C)

Allow syntax associated with C language extensions. This option is available on the
Target & Compiler node in the Configuration pane.

Using this option allows additional structure types as keywords of the language, such as
sfr, sbit, and bit. These structures and associated semantics are part of the compiler
that extends the ANSI® C language.

Settings

Default: none

none

Analysis allows only ANSI C standard syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.

For more information, see “Limitations” on page 1-13.
gnu4.8

Analysis allows GCC 4.8 dialect syntax.
visual10

Analysis allows Visual C++® 2010 syntax.
visual11.0

Analysis allows Visual C++ 2012 syntax.
keil

Analysis allows non-ANSI C syntax and semantics associated with the Keil™
products from ARM (www.keil.com).

iar

Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

http://www.keil.com/
http://www.iar.com/

 Dialect (C)

1-13

Dependency

This parameter is dependant on the value of Target operating system. The dialect
options work only with the applicable operating systems. You can use every dialect with
the Target operating system option, no-predefined-OS.

Limitations

Polyspace does not support certain aspects of the GNU® 4.7 dialect. These limitations can
cause compilation errors, incomplete results, or false positives.

• Vector types and attributes — Not supported, ignores attributes.

Workaround: To reduce compilation issues

• At the command line, use the option -D _EMMINTRIN_H_INCLUDED -D
_XMMINTRIN_H_INCLUDED.

• In the Polyspace environment, in Macros > Preprocessor definitions, add two
rows: _EMMINTRIN_H_INCLUDED and _XMMINTRIN_H_INCLUDED.

• Visibility attributes — Not supported, ignored.

Workaround: Remove all attributes during preprocessing,

• At the command line, use the option -D __attribute__(x)=.
• In the Polyspace environment, in Macros > Preprocessor definitions, add a

row: __attribute__(x)=.
• Complex types — Only floating complex types supported, integral complex types

cause an error.
• Using built-in library function on complex types — Not supported, stubbed

during analysis. Calls to these functions will return variables with full ranges.

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

• Computed goto — Not supported.

This is ignored by Bug Finder.
• Nested functions — Not supported, causes an error.
• Using built-in library functions on atomic operators — Not supported,

Polyspace stubs the functions. This limitation can cause imprecise results.

1 Option Descriptions

1-14

• IEEE® floating point library functions — Not supported, causes compilation
error.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Workaround: In each of your source files, include a file containing the function
definitions or declarations:

• At the command line, use the option -include filename.
•

In the Polyspace environment, in Environment Settings > Include, use the
button to add a row for your definition/declaration file.

Command-Line Information
Parameter: -dialect
Value: none | gnu4.6 | gnu4.7 | visual10 | visual11.0 | keil | iar
Default: none
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -OS-target Linux -dialect gnu4.6

See Also
“Target operating system (C/C++)” on page 1-3 | “Target processor type (C)” on page 1-5

Related Examples
• “Analyze Keil or IAR Dialects”

 Sfr type support (C)

1-15

Sfr type support (C)

Specify the sfr types. This option is available on the Target & Compiler node in the
Configuration pane.

If the code uses sfr keywords, you must declare each sfr type using this option.

Settings

No Default

List each sfr name and its size in bits.

Dependency

Setting Dialect to keil or iar enables this parameter.

Command-Line Information
Parameter: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name
Size Value: 8 | 16 | 32
Example: polyspace-bug-finder-nodesktop -lang c -dialect iar -sfr-
types sfr=8,sfr32=32,sfrb=16 ...

1 Option Descriptions

1-16

Division round down (C)

Specify how division and modulus of a negative numbers is interpreted by the analysis.
This option is available on the Target & Compiler node in the Configuration pane.

The ANSI standard stipulates that "if either operand of / or % is negative, whether the
result of the / operator, is the largest integer less or equal than the algebraic quotient or
the smallest integer greater or equal than the quotient, is implementation defined, same
for the sign of the % operator".

Note: a = (a / b) * b + a % b is always true.

Settings

Default: Off

 Off
If either operand of / or % is negative, the result of the / operator is the smallest
integer greater or equal than the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

 On
If either operand / or % is negative, the result of the / operator is the largest integer
less or equal than the algebraic quotient. The result of the % operator is deduced
from a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

 Enum type definition (C)

1-17

Enum type definition (C)

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. This option is available
on the Target & Compiler node in the Configuration pane.

When using this option, each enum type is represented by the smallest integral type that
can hold its enumeration values.

Settings

Default: signed-int

signed-int

Uses the signed integer type for all dialects except gnu.

For the gnu dialects, it uses the first type that can hold all of the enumerator values
from the following list: signed int, unsigned int, signed long, unsigned
long, signed long long, unsigned long long.

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned
long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: signed-int | auto-signed-first | auto-unsigned-first
Default: signed-int
Example: polyspace-bug-finder-nodesktop -lang -c -enum-type-
definition auto-signed-first

1 Option Descriptions

1-18

Signed right shift (C)

Choose between arithmetical and logical computation. This option is available on the
Target & Compiler node in the Configuration pane.

Settings

Default: Arithmetical

Arithmetical

The sign bit remains:

(-4) >> 1 = -2

(-7) >> 1 = -4

 7 >> 1 = 3

Logical

0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646

(-7) >> 1 = (-7U) >> 1 = 2147483644

 7 >> 1 = 3

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation will be performed.
Parameter: -logical-signed-right-shift
Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

 Preprocessor definitions (C/C++)

1-19

Preprocessor definitions (C/C++)

Define macro compiler flags. This option is available on the Macros node in the
Configuration pane.

Depending on your Target operating system, some compiler flags are defined by
default. Use this option to define flags that are not already defined.

Settings

No Default

Using the button, add a row for the macro flag you want to define. The flag must be
in the format Flag=Value. If you want Polyspace to ignore the flag, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1.

Tips

Sometimes, your source code contains non-ANSI extension keywords. Although your
compiler supports the keywords, Polyspace does not support them. To avoid compilation
errors caused by an unsupported keyword, use this option to replace all occurrences of
the keyword with a blank string in preprocessed code.

For example, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface, enter __far=.
• On the command line, use the flag -D __far.

The software replaces the __far keyword with a blank string during preprocessing. For
example:

int __far* pValue;

is converted to:

1 Option Descriptions

1-20

int * pValue;

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example: polyspace-bug-finder-nodesktop -D HAVE_MYLIB -D int32_t=int

See Also
“Disabled preprocessor definitions (C/C++)” on page 1-21

 Disabled preprocessor definitions (C/C++)

1-21

Disabled preprocessor definitions (C/C++)

Disable macro compiler flags. This option is available on the Macros node in the
Configuration pane.

Some Target operating system settings enable macro compilation flags by default.
This option allows you disable these macros.

Settings

No Default

Using the button, add a new row for each macro flag being disabled.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: flag
Example: polyspace-bug-finder-nodesktop -U HAVE_MYLIB -U USE_COM1

See Also
“Preprocessor definitions (C/C++)” on page 1-19

1 Option Descriptions

1-22

Code from DOS or Windows file system (C/C++)

Specify that DOS or Windows files are in analysis. This option is available on the
Environment Settings node in the Configuration pane.

Use this options if the contents of the Include or Source folder come from a DOS or
Windows file system. It deals with upper/lower case sensitivity and control character
issues.

Settings

Default: On

 On
Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: On
Example: polyspace-bug-finder-nodesktop -dos -I ./
my_copied_include_dir -D test=1

 Command/script to apply to preprocessed files (C/C++)

1-23

Command/script to apply to preprocessed files (C/C++)

Specify a perl script to run on each source file after the preprocessing phase. This option
is available on the Environment Settings node in the Configuration pane.

When this option is used, the specified script file or command is run just after the
preprocessing phase on each preprocessed .c file.

The command should be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output. Additionally, It is important
to preserve the number of lines in the preprocessed file. Adding a line or removing one
could result in some unpredictable behavior on the location of checks and MACROS in
the Polyspace viewer.

Note: The Compilation Assistant is automatically disabled when you specify this option.

Example Script

This script, called replace_keywords, replaces the keyword “Volatile” by “Import”.

#!/usr/bin/perl

my $TOOLS_VERSION = "V1_4_1";

binmode STDOUT;

Process every line from STDIN until EOF

while ($line = <STDIN>)

{

 # Change Volatile to Import

 $line =~ s/Volatile/Import/;

 print $line;

}

To run this script on preprocessed files:

• On a Linux or Mac workstation: polyspace-bug-finder-nodesktop -post-
preprocessing-command 'pwd'/replace_keywords

• On a Windows workstation you must give the full path to the Perl scripter:
matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop.exe -

post-preprocessing-command matlabroot\sys\perl\win32\bin\perl.exe

<absolute_path>\replace_keywords

1 Option Descriptions

1-24

Command-Line Information
Parameter: -post-preprocessing-command
No Default
Value: Path to executable file or command in quotes

 Include (C/C++)

1-25

Include (C/C++)

Specify files to be included by each C file involved in the analysis. This option is available
on the Environment Settings node in the Configuration pane

Settings

No Default

Specify the file name to be included in every C file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Tips

If you have compilation problems because Polyspace does not recognize certain keywords
specific to your compiler, you can define the keywords in a header file and provide the
header file with this option.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example: polyspace-bug-finder-nodesktop -include `pwd`/sources/
a_file.h -include /inc/inc_file.h

1 Option Descriptions

1-26

Include folders (C/C++)

View the include folders used for verification.

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you
see the folders listed under Include folders.

Settings

This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

See Also
-I | “Include (C/C++)”

 Variable/function range setup (C/C++)

1-27

Variable/function range setup (C/C++)

Specify range for global variables or function outputs using a Data Range
Specifications template file. The template file can be either a text or an XML file. This
option is available on the Inputs & Stubbing node in the Configuration pane.

Settings

No Default

Enter full path to the template file. Alternately, click to open a Data Range
Specifications wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -data-
range-specifications "C:\DRS\range.txt"

See Also
“Functions to stub (C)” on page 1-28 | “Ignore default initialization of global variables
(C)”

Related Examples
• “Specify Analysis Options”
• “Specify Constraints”

More About
• “Constraints”

1 Option Descriptions

1-28

Functions to stub (C)

Specify functions that you want the software to stub. This option is available on the
Inputs & Stubbing node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
functions-to-stub function_1,function_2

Related Examples
• “Specify Analysis Options”

 Multitasking (C/C++)

1-29

Multitasking (C/C++)

Specify whether the code is intended for a multitasking application. This option is
available on the Multitasking node in the Configuration pane.

Settings

Default: Off

 On
The code is intended for a multitasking application.

 Off
The code is not intended for a multitasking application.

Command-Line Information

There is no command-line option to solely turn on multitasking verification. However,
using the option -entry-points turns on multitasking verification.

See Also
“Entry points (C/C++)” | “Critical section details (C/C++)” | “Temporally exclusive tasks
(C/C++)”

Related Examples
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

1 Option Descriptions

1-30

Entry points (C/C++)

Specify functions that serve as entry points to your code. Use this option when your code
is intended for multitasking. This option is available on the Multitasking node in the
Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Dependencies

This option is enabled only if you select the Multitasking box.

Tips

• If a function func models cyclic tasks or interrupts that can run zero or more times,
to specify the multiple cycles for Polyspace:

1 Create a new function newFunc of the form

void newFunc (void)

2 In the body of newFunc, call func inside a loop with unspecified number of runs.
Make the loop control variable volatile int. For example:

void newFunc(void) {

 volatile int randomValue = 0;

 while(randomValue) {

 func();

 }

}

3 Specify newFunc as entry point.

Command-Line Information
Parameter: -entry-points
No Default

 Entry points (C/C++)

1-31

Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -entry-
points func_1,func_2

See Also
“Critical section details (C/C++)” | “Temporally exclusive tasks (C/C++)”

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

1 Option Descriptions

1-32

Critical section details (C/C++)
When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function. Specify the two function names. This
option is available on the Multitasking node in the Configuration pane.

When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait until my_task calls the corresponding unlock function.

Settings

No Default

Click to add a field.

• In Starting procedure, enter name of lock function.
• In Ending procedure, enter name of unlock function.

Dependencies

This option is enabled only if you select the Multitasking box.

Tips

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting procedure: func_begin Starting procedure: func_begin
Ending procedure: func_end Ending procedure: func_end
void func() {

 func_begin(1);

 /* Critical section code */

 func_end(1);

}

void func() {

 func_begin(2);

 /* Critical section code */

 func_end(2);

}

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end

 Critical section details (C/C++)

1-33

No Default
Value: function1:cs1[,function2:cs2[,...]]
Example: polyspace-bug_finder-nodesktop -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also

Polyspace Analysis Options
“Multitasking (C/C++)” | “Entry points (C/C++)” | “Temporally exclusive tasks (C/C++)”

Polyspace Results
Data race | Data race including atomic operations

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

1 Option Descriptions

1-34

Temporally exclusive tasks (C/C++)

Specify functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other. Use this option to implement temporal exclusion in multitasking
code. This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Dependencies

This option is enabled only if you select the Multitasking box.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example: polyspace-bug-finder-nodesktop -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"

See Also

Polyspace Analysis Options
“Multitasking (C/C++)” | “Entry points (C/C++)” | “Critical section details (C/C++)”

Polyspace Results
Data race | Data race including atomic operations

 Temporally exclusive tasks (C/C++)

1-35

Related Examples
• “Specify Analysis Options”
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

1 Option Descriptions

1-36

Check MISRA C:2004

Specify whether to check for violation of MISRA C®:2004 rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Coding Rules
node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)”.

custom

Specify coding rules to check. Click to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

 Check MISRA C:2004

1-37

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

Tips

To reduce unproven results:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations
and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations
and rerun verification.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra2
all-rules

See Also
“Files and folders to ignore (C)”

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “Software Quality Objective Subsets (C:2004)”

1 Option Descriptions

1-38

Check MISRA AC AGC

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check. This option is available on
the Coding Rules node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, assigns a symbol to the keyword or
identifier relevant to the violation.

Settings

Default: OBL-rules

OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.
all-rules

Check required, recommended and readability-related rules.
SQO-subset1

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

 Check MISRA AC AGC

1-39

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:
rule number off|on

Use # to enter comments in the file. For example:
10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

Tips

To reduce unproven results:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations
and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations
and rerun verification.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2 |
file

Default: OBL-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-ac-
agc all-rules

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “MISRA C:2004 Coding Rules”
• “Software Quality Objective Subsets (AC AGC)”

1 Option Descriptions

1-40

Check MISRA C:2012

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check. This option is available on the
Coding Rules node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: mandatory-required

mandatory-required

Check mandatory and required guidelines.
mandatory

Check mandatory guidelines.
all

Check mandatory, required, and advisory guidelines.
SQO-subset1

Check only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2

Check a subset of guidelines, SQO-subset1, plus some additional rules. In Polyspace
Code Prover, observing these rules can further reduce the number of unproven
results. For more information, see “Software Quality Objective Subsets (C:2012)”.

custom

Specify guidelines to check. Click to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

 Check MISRA C:2012

1-41

Custom file format:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model

17.2 on # rule 17.2: functions

Tips

To reduce unproven results:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations.
Rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations.
Rerun verification.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | all | SQO-subset1 | SQO-subset2 |
file

Default: mandatory-required
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra3 mandatory-required

See Also
“Files and folders to ignore (C)”

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

1 Option Descriptions

1-42

Use generated code requirements (C)

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory. This option is
available on the Coding Rules node in the Configuration pane.

Settings

Default: Off (On for analyses started from the Simulink® plug-in.)

 Off
Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.4, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5

 Use generated code requirements (C)

1-43

• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency

To use this option, first select the Check MISRA C:2012 option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -misra3
all -misra3-agc-mode

See Also
“Files and folders to ignore (C)” | “Check MISRA C:2012” on page 1-40

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

More About
• “Polyspace MISRA C:2012 Checker”

1 Option Descriptions

1-44

Check custom rules (C/C++)

Define naming conventions for identifiers and check your code against them. This option
is available on the Coding Rules node in the Configuration pane.

After analysis, the Results Summary pane lists violations of the naming conventions.
On the Source pane, for every violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings

Default: Off

 On
Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern., you can enter All struct fields must begin with s_.
This message appears on the Check Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_].
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

 Check custom rules (C/C++)

1-45

For example, for rule 4.3, All struct fields must follow the specified
pattern., you can enter s_[A-Za-z0-9_]. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

• Manually edit an existing custom coding rules file:

1 Open the file with a text editor.
2 For every custom rule you want to check, enter the following information in

adjacent lines.

a Rule number, followed by on. For example:

4.3 on

b The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s_

c The text pattern starting with pattern=. For example:

pattern=s_[A-Za-z0-9_]

To use an existing coding rules file, enter the full path to the file in the field provided

or use in the New File window to navigate to the file location.

 Off
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -custom-
rules "C:\Rules\myrules.txt"

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Create Custom Coding Rules”

1 Option Descriptions

1-46

More About
• “Format of Custom Coding Rules File”
• “Custom Coding Rules”

 Files and folders to ignore (C)

1-47

Files and folders to ignore (C)

Specify files and folders to ignore during coding rules checking and during Bug Finder
defect checking. This option is available on the Inputs & Stubbing node in the
Configuration pane.

Settings

Default: all-headers

all-headers

Ignore included .h files
all

Ignore all files in include folders
custom

Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click .

Command-Line Information
Parameter: -includes-to-ignore
Value: all-headers | all | file1[,file2[,...]] | folder1[,folder2[,...]]
Default: all-headers
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -includes-to-ignore "C:\usr\include"

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

1 Option Descriptions

1-48

Effective boolean types (C)

Specify data types that you want Polyspace to treat as Boolean. You can specify a data
type only if you have defined it through a typedef statement in your source code. This
option is available on the Coding Rules node in the Configuration pane.

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the operand
is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

Rule
Number

Rule Statement

14.4 The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type.

16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);

void func2(void);

void func(myBool flag) {

 if(flag)

 func1();

 else

 Effective boolean types (C)

1-49

 func2();

}

Settings

No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004,
Check MISRA AC AGC or Check MISRA C:2012.

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t

Related Examples
• “Activate Coding Rules Checker”
• “Specify Boolean Types”

More About
• “MISRA C:2004 Coding Rules”

1 Option Descriptions

1-50

Allowed pragmas (C)

Specify pragma directives for which MISRA C rule 3.4 should not be applied. MISRA C or
MISRA® AC AGC rule 3.4 requires checking that all pragma directives are documented
within the documentation of the compiler. This option is available on the Coding Rules
node in the Configuration pane.

Settings

No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during
MISRA C checking .

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004 or
Check MISRA AC AGC.

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

Related Examples
• “Activate Coding Rules Checker”

More About
• “MISRA C:2004 Coding Rules”

 Find defects (C/C++)

1-51

Find defects (C/C++)

Enable or disable defect checking. Activate different defect checkers. This option is
available on the Bug Finder Analysis node in the Configuration pane.

Settings

Default: default

default

A list of default defects defined by the software. For information on which defects are
default, refer to the individual defect reference pages.

all

All defects.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Command-Line Information

Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

Refer to the individual defect reference pages for the command-line parameters values.
Parameter: -checkers
Value: default | all | category | defect parameter
Default: default
Parameter: -disable-checkers
Value: category | defect parameter
Example: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,dataflow -disable-checkers FLOAT_ZERO_DIV

Example: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead_code

See Also
“Numerical Defects” | “Static Memory Defects” | “Dynamic Memory Defects” |
“Programming Defects” | “Data-flow Defects” | “Other Defects”

1 Option Descriptions

1-52

Related Examples
• “Specify Analysis Options”

More About
• “Bug Finder Defect Categories”

 Generate report (C/C++)

1-53

Generate report (C/C++)

Specify whether to generate a report after the analysis. This option is available on the
Reporting node in the Configuration pane.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

Settings

Default: Off

 On
Polyspace generates an analysis report using the template and format you specify.

 Off
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips

• To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator with the options -template and -format.

Command-Line Information

There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
“Report template (C/C++)” | “Output format (C/C++)”

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-54

• “Generate Reports”

 Report template (C/C++)

1-55

Report template (C/C++)

Specify template for generating analysis report. This option is available on the
Reporting node in the Configuration pane.

.rpt files for the report templates are available in MATLAB_Install\polyspace
\toolbox\psrptgen\templates\bug_finder.

Settings

Default: BugFinderSummary

BugFinderSummary

The report lists:

• Polyspace Bug Finder Summary: Number of result sets and number of defects
in the source code.

• Code Metrics: Various complexity metrics. For more information, see “Code
Metrics”.

• Defect Summary: Defects that Polyspace Bug Finder™ looks for. For each
defect, the report lists the:

• Category of the defect.
• Defect name.
• Number of instances of the defect found in the source code.

BugFinder

The report lists:

• Polyspace Bug Finder Summary: Number of result sets and number of defects
in the source code.

• Code Metrics: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Check Details pane.
• Review information, such as Classification, Status and Comment.

1 Option Descriptions

1-56

• Configuration Settings: List of analysis options that Polyspace uses for
analysis. For more information, see “Analysis Options for C” or “Analysis Options
for C++”.

BugFinder_CWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE™ identifiers for each defect.

CodeMetrics

The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

Dependencies

This option is available only if you select the Generate report box.

Command-Line Information
Parameter: -report-template
Value: Name of template with extension .rpt
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
template BugFinder.rpt

See Also
“Generate report (C/C++)” | “Output format (C/C++)”

Related Examples
• “Generate Reports”

 Output format (C/C++)

1-57

Output format (C/C++)

Specify output format of generated report. This option is available on the Reporting
node in the Configuration pane.

Settings

Default: RTF

RTF

Generate report in .rtf format
HTML

Generate report in .html format
PDF

Generate report in .pdf format
Word

Generate report in .doc format. Not available on UNIX® platforms.
XML

Generate report in .xml format.

Tips

• You must have Microsoft Office installed to view .rtf format reports containing
graphics, such as the Quality report.

• If the table of contents or graphics in a .doc report appear outdated, select the
content of the report and refresh the document. Use keyboard shortcuts Ctrl+A to
select the content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format

1 Option Descriptions

1-58

Value: RTF | HTML | PDF | Word | XML
Default: RTF
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
output-format pdf

See Also
“Output format (C/C++)” | “Report template (C/C++)”

Related Examples
• “Specify Analysis Options”
• “Generate Reports”

 Batch (C/C++)

1-59

Batch (C/C++)

Enable or disable batch remote analysis. This option is available on the Distributed
Computing node in the Configuration pane.

For batch remote analysis, you need:

• Polyspace and MATLAB® Distributed Computing Server™ on the cluster
• MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer

Settings

Default: Off

 On
Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor.
• On the DOS or UNIX command line, use the polyspace-jobs-manager

command. For more information, see “Run Remote Analysis at Command Line”.
• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the
cluster.

 Off
Do not run batch analysis on a remote computer.

1 Option Descriptions

1-60

Command-Line Information

To run a remote verification from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also
“Add to results repository (C/C++)” on page 1-61 | -scheduler

Related Examples
• “Specify Analysis Options”
• “Set Up Server for Remote Verification and Analysis”

 Add to results repository (C/C++)

1-61

Add to results repository (C/C++)

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics. This option is available on the
Distributed Computing node in the Configuration pane.

Settings

Default: Off

 On
Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

 Off
Analysis results are stored locally.

Dependency

This option is only available for remote verifications. For local verification, you can
manually upload your results to Polyspace Metrics by right-clicking on your results file
and selecting Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository

See Also
“Set Up Server for Remote Verification and Analysis” | “Set Up Polyspace Metrics” |
“Batch (C/C++)” on page 1-59

Related Examples
• “Run Remote Batch Analysis”

1 Option Descriptions

1-62

Calculate Code Metrics (C/C++)

Specify that Polyspace must compute and display code complexity metrics for your source
code. For more information, see “Code Metrics”.

Settings

Default: Off

 On
Polyspace computes and displays code complexity metrics on the Results Summary
pane.

 Off
Polyspace does not compute complexity metrics.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -code-
metrics

 Command/script to apply after the end of the code verification (C/C++)

1-63

Command/script to apply after the end of the code verification (C/
C++)

Specify a command or script to be executed after the verification. This option is available
on the Advanced Settings node in the Configuration pane.

Settings

No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. For example, you can enter the path to a script that sends an email.
After the verification, this script will be executed.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example: polyspace-bug-finder-nodesktop -sources file_name -post-
analysis-command `pwd`/send_email

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-64

Other (C)

In this section...

“-extra-flags” on page 1-64
“-c-extra-flags” on page 1-64
“-cfe-extra-flags” on page 1-65
“-il-extra-flags” on page 1-65

This option is available on the Advanced Settings node in the Configuration pane.

-extra-flags

This dialog box is for adding nonofficial or expert options to the analyzer. Each word of
the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

 polyspace-bug-finder-nodesktop -extra-flags -param1 -extra-flags -

param2 \

 -extra-flags 10 ...

-c-extra-flags

This option is used to specify an expert option to be added to an analysis. Each word of
the option (even the parameters) must be preceded by -c-extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -c-extra-flags -param1 -c-extra-flags

-param2 -c-extra-flags 10

 Other (C)

1-65

-cfe-extra-flags

This option is used to specify an expert option for an analysis.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -cfe-extra-flags -param1 -cfe-extra-

flags -param2

-il-extra-flags

This option is used to specify an expert option to be added to an analysis. Each word of
the option (even the parameters) must be preceded by -il-extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -il-extra-flags -param1 -il-extra-

flags -param2 -il-extra-flags 10

1 Option Descriptions

1-66

Termination functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends. This
option is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
“Parameters (C)” on page 1-70 | “Inputs (C)” on page 1-72 | “Initialization
functions (C)” on page 1-67 | “Step functions (C)” on page 1-68

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

 Initialization functions (C)

1-67

Initialization functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call before the cyclic code begins. This
option is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
“Parameters (C)” on page 1-70 | “Inputs (C)” on page 1-72 | “Step functions (C)”
on page 1-68 | “Termination functions (C)” on page 1-66

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1 Option Descriptions

1-68

Step functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code. This
option is available on the Main Generator node in the Configuration pane.

Settings

Default: unused

none

The generated main does not call functions in the cyclic code.
unused

The generated main calls all functions that are not called elsewhere in the code. In
particular, if you specify certain functions for the options Initialization functions
or Termination functions, the generated main does not call those functions in the
cyclic code. It also does not call inlined functions.

all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

Tips

• When you select unused, the generated main does not call a function if it is called
elsewhere. However, this rule does not apply to calls through function pointers. The
generated main calls a function even when it is called elsewhere through a function
pointer.

• If you have specified a function for the option Initialization functions or
Termination functions, to call it inside the cyclic code, use custom and specify the
function name.

 Step functions (C)

1-69

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
“Parameters (C)” on page 1-70 | “Inputs (C)” on page 1-72 | “Initialization
functions (C)” on page 1-67 | “Step functions (C)” on page 1-68 | “Termination
functions (C)” on page 1-66

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1 Option Descriptions

1-70

Parameters (C)

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type. This option is available on the Main Generator node in the
Configuration pane.

Settings

Default: public

public

The generated main initializes all variables except those declared with keywords
static and const.

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | public | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
“Inputs (C)” on page 1-72 | “Initialization functions (C)” on page 1-67 | “Step
functions (C)” on page 1-68 | “Termination functions (C)” on page 1-66

 Parameters (C)

1-71

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1 Option Descriptions

1-72

Inputs (C)

This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have anyvalue allowed by their type. This option is available
on the Main Generator node in the Configuration pane.

Settings

Default: public

public

The generated main initializes all variables except those declared with keywords
static and const.

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | public | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
“Parameters (C)” on page 1-70 | “Initialization functions (C)” on page 1-67 | “Step
functions (C)” on page 1-68 | “Termination functions (C)” on page 1-66

 Inputs (C)

1-73

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

1 Option Descriptions

1-74

Verify module (C)

This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files. This option is available on the Main Generator node in the Configuration pane.

Settings

Default: On

 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

• Initializes variables that you specify using Variables to initialize.
• Calls functions that you specify using Initialization functions ahead of other

functions.
• Calls functions that you specify using Functions to call in arbitrary order.

If you do not specify the above options explicitly, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• Calls in arbitrary order all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops verification if a main function is not present in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

 Verify module (C)

1-75

See Also
“Parameters (C)” on page 1-70 | “Inputs (C)” on page 1-72 | “Initialization functions (C)”
on page 1-67 | “Step functions (C)” on page 1-68 | “Termination functions (C)” on page
1-66

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Main Generation for Model Analysis”

2

Option Descriptions for C++ Code

• “Target processor type (C++)” on page 2-2
• “Dialect (C++)” on page 2-4
• “C++11 Extensions (C++)” on page 2-9
• “Block char16/32_t types (C++)” on page 2-10
• “Pack alignment value (C++)” on page 2-11
• “Import folder (C++)” on page 2-12
• “Ignore pragma pack directives (C++)” on page 2-13
• “Support managed extensions (C++)” on page 2-14
• “Enum type definition (C++)” on page 2-15
• “Management of scope of 'for loop' variable index (C++)” on page 2-16
• “Management of wchar_t (C++)” on page 2-17
• “Set wchar_t to unsigned long (C++)” on page 2-18
• “Set size_t to unsigned long (C++)” on page 2-19
• “Ignore link errors (C++)” on page 2-20
• “Functions to stub (C++)” on page 2-21
• “Check MISRA C++ rules” on page 2-23
• “Check JSF C++ rules” on page 2-25
• “Files and folders to ignore (C++)” on page 2-27
• “Other (C++)” on page 2-28
• “Termination functions (C++)” on page 2-29
• “Initialization functions (C++)” on page 2-31
• “Step functions (C++)” on page 2-32
• “Parameters (C++)” on page 2-34
• “Inputs (C++)” on page 2-36
• “Verify module (C++)” on page 2-38

2 Option Descriptions for C++ Code

2-2

Target processor type (C++)

Specify the target processor type. This option is available on the Target & Compiler
node in the Configuration pane.

Specifying the target processor type informs Polyspace of the size of fundamental data
types and of the endianess of the target machine. You can analyze code intended for an
unlisted processor type using one of the listed processor types, if they share common data
properties.

Settings

Default: i386

You can modify some default attributes by selecting the browse button to the right of
the Target processor type drop-down menu. The optional settings for each target are
shown in [brackets] in the table.

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68k /

ColdFirea
8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
x86_64 8 16 32 64

[32]b
64 32 64 128 64 signed Little 64 [32]

mcpu...

(Advanced)c
8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32 [16,
8]

a. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
b. Use option -long-is-32bits to support Microsoft C/C++ Win64 target
c. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets.

 Target processor type (C++)

2-3

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mpcu generic target processor. If your target processor
does not match the characteristics of a processor described above, contact MathWorks
technical support for advice.

Command-Line Information
Parameter: -target
Value: i386 | m68k | powerpc | c-167 | x86_64 | mpcu
Default: i386
Example: polyspace-bug-finder-nodesktop -lang cpp -target powerpc

See Also
“Generic target options (C/C++)” on page 1-8

Related Examples
• “Specify Analysis Options”
• “Modify Predefined Target Processor Attributes”
• “Specify Generic Target Processors”

2 Option Descriptions for C++ Code

2-4

Dialect (C++)

Allow syntax associated with C++ language extensions. This option is available on the
Target & Compiler node in the Configuration pane.

Settings

Default: none

none

Analysis allows for ISO®/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

gnu3.4

Analysis allows GCC 3.4 dialect syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.

For more information, see “Limitations” on page 2-5.
gnu4.8

Analysis allows GCC 4.8 dialect syntax.
iso

Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

cfront2

Analysis allows for Cfront 2.0 language extensions.
cfront3

Analysis allows for Cfront 3.0 language extensions.
visual

 Dialect (C++)

2-5

Analysis allows Visual C++ .NET 2003 syntax.
visual6

Analysis allows Visual C++ 6.0 (VC6) syntax.
visual7.0

Analysis allows Visual C++ .NET 2002 syntax.
visual7.1

Analysis allows Visual C++ .NET 2003 syntax.
visual8

Analysis allows Visual C++ 2005 syntax.
visual9.0

Analysis allows Visual C++ 2008 syntax.
visual10

Analysis allows Visual C++ 2010 syntax.

This option automatically adds the option -no-stl-stubs.
visual11.0

Analysis allows Visual C++ 2012 syntax.

This option automatically adds the option -no-stl-stubs.

Dependencies

This parameter is dependent on the value of Target operating system. The dialect
options work only with the applicable operating systems. You can use every dialect with
the Target operating system option, no-predefined-OS.

If you enable Check JSF C++ Rules with a dialect other than iso or none, Polyspace
cannot completely check some JSF® coding rules. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations

Polyspace does not support certain aspects of the GNU 4.7 dialect. These limitations can
cause compilation errors, incomplete results, or false positives.

2 Option Descriptions for C++ Code

2-6

• Priority attributes — Not supported, ignores priorities and uses standard
initialization instead.

Example

#include <stdio.h>

struct A{

 int a;

 A():a(1) {

 fprintf(stderr, "A constructor\n");

 }

};

struct B{

 int b;

 B():b(1) {

 fprintf(stderr, "B constructor\n");

 }

};

A a __attribute__((init_priority (100)));

B b __attribute__((init_priority (50)));

The expected output from the above code is:

B constructor

A constructor

However, Polyspace preserves the standard initialization. So the actual output is:

A constructor

B constructor

Workaround: To use the desired priority, change the order of the declarations to
match the desired order.

• Vector types and attributes — Limited support.

If you encounter compilation issues:

• At the command line, use the option -D _EMMINTRIN_H_INCLUDED -D
_XMMINTRIN_H_INCLUDED.

• In the Polyspace environment, in Macros > Preprocessor definitions, add two
rows: _EMMINTRIN_H_INCLUDED and _XMMINTRIN_H_INCLUDED.

 Dialect (C++)

2-7

• Visibility attributes — Not supported, ignored.

Workaround: Remove all attributes during preprocessing,

• At the command line, use the option -D __attribute__(x)=.
• In the Polyspace environment, in Macros > Preprocessor definitions, add a

row: __attribute__(x)=.
• Complex types — Only floating complex types supported, integral complex types

cause an error.
• Using built-in library function on complex types — Not supported, stubbed

during analysis. Calls to these functions will return variables with full ranges.

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

• Computed goto — Not supported.

This is ignored by Bug Finder.
• Nested functions — Not supported, causes an error.
• Using built-in library functions on atomic operators — Not supported,

Polyspace stubs the functions. This limitation can cause imprecise results.
• IEEE floating point library functions — Limited support, can cause imprecise

results.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Command-Line Information
Parameter: -dialect
Value: none | gnu3.4 | gnu4.6 | gnu4.7 | iso | cfront2 | cfront3 |
visual | visual6 | visual7.0 | visual7.1 | visual8 | visual9.0 |

visual10 | visual11.0

Default: none
Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"file1.cpp,file2.cpp" -OS-target Visual -dialect visual7.1

2 Option Descriptions for C++ Code

2-8

See Also
“Target operating system (C/C++)” on page 1-3 | “Target processor type (C++)” on page
2-2 | “C++11 Extensions (C++)” on page 2-9 | “Block char16/32_t types (C++)” on
page 2-10

Related Examples
• “Analyze Keil or IAR Dialects”

More About
• “Supported C++ 2011 Standards”

 C++11 Extensions (C++)

2-9

C++11 Extensions (C++)

Allow for C++11 language extensions. This option is available on the Target &
Compiler node in the Configuration pane.

If your code uses any C++11 language constructs, select this option to allow this syntax
during your analysis.

Settings

Default: Off

 Off
The analysis does not allow C++11 syntax.

 On
The analysis allows C++11 syntax.

Dependencies

You can only select this option when the Dialect option is none, gnu4.6, or gnu4.7.

Command-Line Information
Parameter: -cpp11-extension
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -cpp11-extension

See Also
“Dialect (C++)” on page 2-4 | “Block char16/32_t types (C++)” on page 2-10

More About
• “Supported C++ 2011 Standards”

2 Option Descriptions for C++ Code

2-10

Block char16/32_t types (C++)

The analysis does not allow char16_t or char32_t types. This option is available on the
Target & Compiler node in the Configuration pane.

If you have defined char16_t and/or char32_t through a typedef statement or using
includes, this option allows you to turn off the standard Polyspace definition of char16_t
and char32_t.

Settings

Default: Off

 Off
The analysis allows char16_t and char32_t types.

 On
The analysis does not allow char16_t and char32_t types.

Dependencies

You can only select this option when the Dialect option is either none or a gnu dialect.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -dialect gnu4.7 -
cpp11-extension -no-uliterals

See Also
“Dialect (C++)” on page 2-4 | “C++11 Extensions (C++)” on page 2-9

More About
• “Supported C++ 2011 Standards”

 Pack alignment value (C++)

2-11

Pack alignment value (C++)

Specify the default packing alignment for an analysis. This option is available on the
Target & Compiler node in the Configuration pane.

If an invalid value is given, analysis will halt and display an error message. with a bad
value or if this option is used in non visual mode (Target operating system Visual or
Dialect visual*).

Settings

Default: 8

• 1
• 2
• 4
• 8
• 16

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example: polyspace-bug-finder-nodesktop -lang cpp -pack-alignment-
value 4

2 Option Descriptions for C++ Code

2-12

Import folder (C++)

Specifies a single directory to be included by #import directive. This option is available
on the Target & Compiler node in the Configuration pane.

Settings

No default

Give the location of *.tlh files generated by a Visual Studio compiler when
encountering #import directive on *.tlb files.

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -import-dir
Value: File location
Example: polyspace-bug-finder-nodesktop -OS-target Visual -dialect
visual8 -import-dir /com1/inc

 Ignore pragma pack directives (C++)

2-13

Ignore pragma pack directives (C++)

Specifies C++ #pragma packing alignment for structure, union, and class members. This
option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: Off

 Off
Keeps C++ #pragma directives in the analysis

 On
Allows C++ #pragma directives to be ignored in order to prevent link errors

Analysis will halt and display an error message with a bad value or if this option is
used in non visual mode (Target operating system Visual or Dialect visual*).

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-bug-finder-nodesktop -lang cpp -ignore-pragma-pack

2 Option Descriptions for C++ Code

2-14

Support managed extensions (C++)

Visual C++ /FX option allows the partial translation of sources making use of managed
extensions to Visual C++ sources without managed extensions. This option is available
on the Target & Compiler node in the Configuration pane.

Settings

Default: Off

 Off
Do not support managed extensions

 On
Allows the analysis of a project containing translated sources obtained by compilation
of a Visual project using the /FX Visual option.

Using /FX, the translated files are generated in place of the original ones in the
project, but the names are changed from foo.ext to foo.mrg.ext.

These extensions are currently not taken into account by Polyspace analysis and can
be considered as a limitation to analyze this kind of code. Managed files need to be
located in the same folder as the original ones and Polyspace software will analyze
managed files instead of the original ones without intrusion, and will permit you to
remove part of the limitations due to specific extensions.

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -support-FX-option-results
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -OS-target Visual -
support-FX-option-results

 Enum type definition (C++)

2-15

Enum type definition (C++)

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. This option is available
on the Target & Compiler node in the Configuration pane.

When using this option, each enum type is represented by the smallest integral type that
can hold all its enumeration values.

Settings

Default: auto-signed-int-first

auto-signed-int-first On
Uses the first type that can hold all of the enumerator values from the following
list:signed int, unsigned int, signed long, unsigned long, signed long
long, unsigned long long

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned
long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: auto-signed-int-first | auto-signed-first | auto-unsigned-
first

Default: auto-signed-int-first
Example: polyspace-bug-finder-nodesktop -lang cpp -enum-type-
definition auto-signed-first

2 Option Descriptions for C++ Code

2-16

Management of scope of 'for loop' variable index (C++)

Specify the scope of the index variable declared within a for loop. This option is
available on the Target & Compiler node in the Configuration pane.

For example:
for (int index=0; ...){};

index++; // At this point, index variable is usable (out) or not (in)

This option allows the default behavior implied by the Polyspace -dialect option to be
overridden.

This option is equivalent to the Visual C++ options /Zc:forScope and Zc:forScope-.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected dialect
out

The index variable is usable outside the scope of the for loop.

Default behavior for the dialect options cfront2, crfront3, visual6, visual7 and
visual 7.1

in

The index variable is not usable outside the scope of the for loop.

Default behavior for all other dialects, including visual8. The C++ standard
specifies that the index is treated as in.

Command-Line Information
Parameter: -for-loop-index-scope
Value: defined-by-dialect | out | in
Default: defined-by-dialect
Example: polyspace-bug-finder-nodesktop -lang cpp -for-loop-index-
scope in

 Management of wchar_t (C++)

2-17

Management of wchar_t (C++)

Specify how to treat wchar_t. This option is available on the Target & Compiler node
in the Configuration pane.

This option is equivalent to the Visual C++ options /Zc:wchar and /Zc:wchar-.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected dialect
typedef

Use according to typedef statement specified by Microsoft Visual C++
6.0/7.0/7.1 dialects.

Default behavior for the dialect options visual6, visual7.0 and visual7.1
keyword

Use as a keyword as given by the C++ standard

Default behavior for all other dialects, including visual8.

Command-Line Information
Parameter: -wchar-t-is
Value: defined-by-dialect | typedef | keyword
Default: defined-by-dialect
Example: polyspace-bug-finder-nodesktop -for-loop-index-scope keyword

2 Option Descriptions for C++ Code

2-18

Set wchar_t to unsigned long (C++)

Specify the underlying type of wchar_t to be unsigned long. This option is available on
the Target & Compiler node in the Configuration pane.

Settings

Default: Off

 Off
Use the default underlying type of wchar_t as defined by the dialect or the
Management of wchar_t option.

 On
Set the type of size_t to unsigned long, as defined in the C++ standard.

For example, sizeof(L'W') will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.

Command-Line Information
Parameter: -wchar-t-is-unsigned-long
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -wchar-t-is-
unsigned-long

 Set size_t to unsigned long (C++)

2-19

Set size_t to unsigned long (C++)

Force the underlying type of size_t to be unsigned long. This option is available on
the Target & Compiler node in the Configuration pane. If you use this option, you
can only redefine size_t with a typedef statement to unsigned long.

For example, Polyspace applies the following typedef statement because the type is
unsigned long:

typedef unsigned long size_t;

However, Polyspace ignores this typedef statement, because the Set size_t to
unsigned long option allows only unsigned long.

typedef unsigned int size_t;

Settings

Default: Off

 Off
Use the default underlying type of size_t, unsigned int

 On
Set the type of size_t to unsigned long

Command-Line Information
Parameter: -size-t-is-unsigned-long
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -size-t-is-
unsigned-long

2 Option Descriptions for C++ Code

2-20

Ignore link errors (C++)

Ignore linkage errors. This option is available on the Environment Settings node in the
Configuration pane.

Some functions may be declared inside an extern “C” { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings

Default: Off

 Off
Stop analysis for linkage errors.

 On
Ignore the linkage errors if possible.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

 Functions to stub (C++)

2-21

Functions to stub (C++)

Specify functions to stub during verification. This option is available on the Inputs &
Stubbing node in the Configuration pane.

For these functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Settings

No Default

Click to enter function name.

When entering function names, use one of the following syntaxes:

• Basic syntax, with extensions for classes and templates:

Function Type Syntax

Simple function test

Class method A::test

Template method A<T>::test

• Syntax with function arguments, to differentiate overloaded functions. Function
arguments are separated with semicolons:

Function Type Syntax

Simple function test()

Class method A::test(int;int)

Template method A<T>::test<T>::test(T;T)

Command-Line Information
Parameter: -functions-to-stub
No Default

2 Option Descriptions for C++ Code

2-22

Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -
functions-to-stub function_1,function_2

 Check MISRA C++ rules

2-23

Check MISRA C++ rules

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Coding Rules
node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

2 Option Descriptions for C++ Code

2-24

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes

15-0-2 on # rule 15-0-2: exception handling

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-cpp
all-rules

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace MISRA C++ Checker”
• “Software Quality Objective Subsets (C++)”
• “MISRA C++ Coding Rules”

 Check JSF C++ rules

2-25

Check JSF C++ rules

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check. This option is available on the Coding
Rules node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules

Check all Shall, Will, and Should rules. Should rules are advisory rules.
custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

67 off # rule 67: classes

2 Option Descriptions for C++ Code

2-26

202 on # rule 202: expressions

Tips

• If your project uses a dialect other than ISO, some rules might not be completely
checked. For example, AV Rule 8: “All code shall conform to ISO/IEC 14882:2002(E)
standard C++.”

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | file
Default: shall-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -jsf-
coding-rules all-rules

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”

More About
• “Polyspace JSF C++ Checker”
• “JSF C++ Coding Rules”

 Files and folders to ignore (C++)

2-27

Files and folders to ignore (C++)

Specify files and folders to ignore during coding rules checking and during Bug Finder
defect checking. This option is available on the Inputs & Stubbing node in the
Configuration pane.

Settings

Default: all-headers

all-headers

Ignores .h or .hpp files
all

Ignores all files in include folders
custom

Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click .

Command-Line Information
Parameter: -includes-to-ignore
Value: all-headers | all | file1[,file2[,...]] | folder1[,folder2[,...]]
Default: all-headers
Example: polyspace-bug-finder-nodesktop -lang cpp -sources file_name
-jsf-coding-rules required-rules -includes-to-ignore "C:\usr

\include"

See Also
“Check MISRA C++ rules” | “Check JSF C++ rules”

Related Examples
• “Specify Analysis Options”
• “Activate Coding Rules Checker”

2 Option Descriptions for C++ Code

2-28

Other (C++)

This option is for adding nonofficial or expert options to the analyzer. This option is
available on the Advanced Settings node in the Configuration pane. Each word of the
option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -extra-flags -param1 -extra-flags -

param2

-cpp-extra-flags flag

It specifies an expert option to be added to a C++ analysis. Each word of the option (even
the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -cpp-extra-flags -stubbed-new-may-

return-null

-il-extra-flags flag

It specifies an expert option to be added to a C++ analysis. Each word of the option (even
the parameters) must be preceded by -il-extra-flags.

These flags will be given to you by MathWorks if required.

No Default

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -il-extra-flags flag

 Termination functions (C++)

2-29

Termination functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code loop. This option
is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name. For class methods, use the syntax
className::functionName.

Tips

• If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
“Parameters (C++)” on page 2-34 | “Inputs (C++)” on page 2-36 | “Initialization
functions (C++)” on page 2-31 | “Step functions (C++)” on page 2-32

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”

2 Option Descriptions for C++ Code

2-30

• “Main Generation for Model Analysis”

 Initialization functions (C++)

2-31

Initialization functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call before the cyclic code begins. This
option is available on the Main Generator node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name. For class methods, use the syntax
className::functionName.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
“Parameters (C++)” on page 2-34 | “Inputs (C++)” on page 2-36 | “Step functions
(C++)” on page 2-32 | “Termination functions (C++)” on page 2-29

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

2 Option Descriptions for C++ Code

2-32

Step functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code. This
option is available on the Main Generator node in the Configuration pane.

Settings

Default: none

none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify. Click to add a field. Enter
function name. For class methods, use the syntax className::functionName.

Tips

• If you specify a function for the option Initialization functions or Termination
functions, you cannot specify it for Step functions.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
“Parameters (C++)” on page 2-34 | “Inputs (C++)” on page 2-36 | “Initialization
functions (C++)” on page 2-31 | “Termination functions (C++)” on page 2-29

 Step functions (C++)

2-33

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

2 Option Descriptions for C++ Code

2-34

Parameters (C++)

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type. This option is available on the Main Generator node in the
Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click
to add a field. Enter variable name. For class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
“Inputs (C++)” on page 2-36 | “Initialization functions (C++)” on page 2-31 | “Step
functions (C++)” on page 2-32 | “Termination functions (C++)” on page 2-29

Related Examples
• “Specify Analysis Options”

 Parameters (C++)

2-35

• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

2 Option Descriptions for C++ Code

2-36

Inputs (C++)

This option is available only for model-generated code.

Specify variables that the generated main must write to, at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type. This option is available
on the Main Generator node in the Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click
to add a field. Enter variable name. For class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
“Parameters (C++)” on page 2-34 | “Initialization functions (C++)” on page 2-31 | “Step
functions (C++)” on page 2-32 | “Termination functions (C++)” on page 2-29

Related Examples
• “Specify Analysis Options”

 Inputs (C++)

2-37

• “Configure Simulink Model”

More About
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code”
• “Main Generation for Model Analysis”

2 Option Descriptions for C++ Code

2-38

Verify module (C++)

This option is available only for model-generated code.

Specify that Polyspace must generate a main function during verification if it does not
find one in the source files. This option is available on the Main Generator node in the
Configuration pane.

Settings

Default: On

 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

1 Initializes variables specified by Variables to initialize.
2 Calls functions specified by Initialization functions ahead of other functions.
3 Calls functions specified by Functions to call in arbitrary order.
4 Calls class methods specified by Class and Functions to call within the

specified classes.

If you do not specify the above options explicitly, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• Calls in arbitrary order all functions and class methods that are not called
anywhere in the source files. Polyspace considers that global variables can be
written between two consecutive function or methods calls. Therefore, in each
called function or method, global variables initially have the full range of values
allowed by their type.

 Off
Polyspace stops verification if it does not find a main function in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off

 Verify module (C++)

2-39

Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
“Initialization functions (C++)” on page 2-31

Related Examples
• “Specify Analysis Options”
• “Configure Simulink Model”

More About
• “Main Generation for Model Analysis”

3

Polyspace Command-Line Options

3 Polyspace Command-Line Options

3-2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Mark the offending code block by two #pragma directives, one at the beginning of the
asm code and one at the end. In the command usage, give these marks in the same order
for -asm-begin as they are for -asm-end.

Examples

A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

#pragma asm_begin_foo

int foo(void) { /* asm code to be ignored by Polyspace */ }

#pragma asm_end_foo

#pragma asm_begin_bar

void bar(void) { /* asm code to be ignored by Polyspace */ }

 -asm-begin -asm-end

3-3

#pragma asm_end_bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm_begin_foo,asm_begin_bar"

 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those respective
sections.

See Also
polyspaceBugFinder

3 Polyspace Command-Line Options

3-4

-author
Specify project author

Syntax

-author "value"

Description

-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

Note: In the Polyspace environment, select to specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop -author "John Smith"

See Also
-date | -prog | polyspaceBugFinder

 -date

3-5

-date
Specify date of analysis

Syntax

-date "date"

Description

-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also
-author | -prog | polyspaceBugFinder | polyspaceCodeProver

3 Polyspace Command-Line Options

3-6

-h[elp]
Display list of possible options

Syntax

-h

-help

Description

-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples

Display the command-line help.

polyspace-bug-finder-nodesktop -h

polyspace-bug-finder-nodesktop -help

See Also
polyspaceBugFinder

 -I

3-7

-I
Specify include folder for compilation

Syntax

-I folder

Description

-I folder specifies the name of a folder that you must include when compiling C
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

Polyspace software automatically includes the ./sources folder (if it exists) after the
include folders that you specify.

Examples

Include two folders with the analysis.

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

 -I ./sources

See Also
polyspaceBugFinder

3 Polyspace Command-Line Options

3-8

-import-comments
Import comments and justifications from previous analysis

Syntax

-import-comments resultsFolder

Description

-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3

 -import-comments C:\Results\myProj\1.2

See Also
-version | polyspaceBugFinder

 -lang

3-9

-lang
Specify code language for the project

Syntax

-lang [c|cpp]

Description

-lang [c|cpp] specifies the code language for the project, either c for C code or cpp for
C++ code.

If you do not specify a language, Polyspace tries to detect the language from the source
files.

Note: In the Polyspace user interface, specify the project language when you create a new
project. For more information, see “Create New Project”.

Examples

Define the language of your Polyspace Project as C++.

polyspace-bug-finder-nodesktop -lang cpp -sources...

See Also
polyspaceBugFinder

3 Polyspace Command-Line Options

3-10

-max-processes
Specify the maximum number of processes that can run simultaneously on a multicore
system.

Syntax

-max-processes num

Description

-max-processes num specifies the maximum number of processes that can run
simultaneously on a multicore system. The valid range of num is 1 to 128. The default is
the maximum number of available CPUs.

Examples

Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

See Also
polyspaceBugFinder

 -options-file

3-11

-options-file
Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject

-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-dialect none

-dos

-misra2 required-rules

-includes-to-ignore all-headers

-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

See Also
polyspaceBugFinder | polyspaceConfigure

3 Polyspace Command-Line Options

3-12

-prog
Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples

Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also
-author | -date | polyspaceBugFinder

 -report-output-name

3-13

-report-output-name
Specify name of report

Syntax

-report-output-name reportName

Description

-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

Examples

Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer

 -report-output-name Airbag_v3.rtf

See Also
“Output format (C/C++)” on page 1-57 | “Report template (C/C++)” |
polyspaceBugFinder

3 Polyspace Command-Line Options

3-14

-results-dir
Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at
the command line is the current folder. In the user interface, the default location is
C:Polyspace_Results.

Examples

Specify to store your results in the RESULTS folder.

polyspace-bug-finder-nodesktop -results-dir RESULTS ...

 export RESULTS=results_'date + %d%B_%HH%M_%A'

polyspace-bug-finder-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspaceBugFinder

 -scheduler

3-15

-scheduler
Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the MDCS cluster or
MATLAB job scheduler on the node host. Use this command to manage the cluster, or to
specify where to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost

polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400

polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspaceBugFinder | polyspaceJobsManager | polyspaceJobsManager

3 Polyspace Command-Line Options

3-16

-sources
Specify source files

Syntax

-sources file1[,file2,...]

-sources file1 -sources file2

Description

-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. The list must be in quotations and separated
by commas. You can use standard UNIX wildcards with this option to specify your
sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c

 -sources funAlgebra.c -sources funGeometry.c

See Also
polyspaceBugFinder

 -sources-list-file

3-17

-sources-list-file
Specify file containing list of sources

Syntax

-sources-list-file "filename"

Description

-sources-list-file "filename" specifies a text file that lists each file name that
you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c

C:\Sources2\myfile2.c

This option is available only in batch analysis mode.

Examples

Run analysis on files listed in files.txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "C:\Analysis\files.txt

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "/home/polyspace/files.txt"

See Also
polyspaceBugFinder

3 Polyspace Command-Line Options

3-18

-termination-functions
Specify process termination functions

Syntax

-termination-functions function1[,function2[,...]]

Description

-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not
defined in your code.

Examples

Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {

 if(val==0)

 my_exit();

 return (1/val);

}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my_exit

See Also
polyspaceBugFinder

http://www.cplusplus.com/reference/cstdlib/exit/

 -tmp-dir-in-results-dir

3-19

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

-tmp-dir-in-results-dir keeps temporary files in the results folder. By default,
temporary files are stored in the standard /temp or C:\Temp folder. This option stores
the temporary files in a subfolder of the results folder. Use this option only when the
temporary folder partition does not have enough disk space. If the results folder is
mounted on a network drive, this option can slow down your processor.

Examples

Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also
polyspaceBugFinder

3 Polyspace Command-Line Options

3-20

-v[ersion]
Display Polyspace version number

Syntax

-v

-version

Description

-v or -version displays the version number of your Polyspace product.

Examples

Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also
polyspaceBugFinder

4

Checks

4 Checks

4-2

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description

Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)

 {

 int *ptr= *loc, found = 0;

 if (ptr==NULL)

 {

 ptr++;

 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;

 }

 return(found);

 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

 Arithmetic operation with NULL pointer

4-3

int Check_Next_Value(int *loc, int val)

 {

 int *ptr= *loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */

 if (ptr!=NULL)

 {

 ptr++;

 if (*ptr==val) found=1;

 }

 return(found);

 }

Check Information
Category: Static memory
Language: C | C++
Default: off
Command-Line Syntax: null_ptr_arith

See Also
Null pointer | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

4 Checks

4-4

Array access out of bounds
Array index outside bounds during array access

Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Examples

Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);

 /* Defect: Value of i is greater than allowed value of 9 */

}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

 Array access out of bounds

4-5

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 /* Fix: Print fib[9] instead of fib[10] */

 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);

}

The printf statement accesses fib[9] instead of fib[10].

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: out_bound_array

See Also
Pointer access out of bounds | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

4 Checks

4-6

Assertion
Failed assertion statement

Description

Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Examples

Check Assertion on Unsigned Integer

void asserting_x(unsigned int theta) {

 theta =+ 5;

 assert(theta < 0);

}

In this example, the assert function checks if the input variable, theta, is less than
or equal to zero. The assertion fails because theta is an unsigned integer, so the value
at the beginning of the function is at least zero. This positive value is increased by five.
Therefore, the range of theta is [5..MAX_INT]. theta is always greater than zero.

Correction — Change Assert Expression

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

void asserting_x(unsigned int theta) {

 theta =+ 5;

 assert(theta > 0);

}

Correction — Fix Code

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

 Assertion

4-7

void asserting_x(int theta) {

 theta = -abs(theta);

 assert(theta < 0);

}

Check Information
Category: Other
Language: C | C++
Default: on
Command-Line Syntax: assert

See Also
“Find defects (C/C++)”

More About
• “Other Defects”
• “Review and Comment Results”

4 Checks

4-8

Code deactivated by constant false condition

Code segment deactivated by #if 0 directive or if(0) condition

Description

Code deactivated by constant false condition occurs when a block of code is
deactivated using a #if 0 directive or if(0) condition.

Examples

Code Deactivated by Constant False Condition Error

#include<stdio.h>

int Trim_Value(int* Arr,int Size,int Cutoff)

{

 int Count=0;

 for(int i=0;i < Size;i++){

 if(Arr[i]>Cutoff){

 Arr[i]=Cutoff;

 Count++;

 }

 }

 #if 0

 /* Defect: Code Segment Deactivated */

 if(Count==0){

 printf("Values less than cutoff.");

 }

 #endif

 return Count;

}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

 Code deactivated by constant false condition

4-9

Correction — Change #if 0 to #if 1

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if 0 to #if 1.

#include<stdio.h>

int Trim_Value(int* Arr,int Size,int Cutoff)

{

 int Count=0;

 for(int i=0;i < Size;i++)

 {

 if(Arr[i]>Cutoff)

 {

 Arr[i]=Cutoff;

 Count++;

 }

 }

 /* Fix: Replace #if 0 by #if 1 */

 #if 1

 if(Count==0)

 {

 printf("Values less than cutoff.");

 }

 #endif

 return Count;

}

Check Information
Category: Data-flow
Language: C | C++
Default: off
Command-Line Syntax: deactivated_code

See Also
“Find defects (C/C++)” | Dead code | Unreachable code | Useless if

4 Checks

4-10

More About
• “Data-flow Defects”
• “Review and Comment Results”

 Data race

4-11

Data race
Multiple tasks perform unprotected non-atomic operations on shared variables

Description

Data race occurs when:

• Multiple tasks perform unprotected operations on a shared variable.
• At least one task performs a read operation and another task performs a write

operation.
• At least one operation is non-atomic. For data race on both atomic and non-atomic

operations, see Data race including atomic operations.

A non-atomic operation can translate into more than one machine instruction. For
instance:

• The operation can involve both a read and write operation. For example, var+
+ involves reading the value of var, increasing the value by one and writing the
increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the
operation

long long var1, var2;

var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to
compute atomicity. For instance, if you use i386 as your Target processor type, the
Pointer size is 32 bits, and Long long and Double sizes are both 64 bits. Therefore,
Polyspace considers copying one long long or double variable to another as non-
atomic.

• The operation can involve writing the return value of a function call to a shared
variable. For example, the operation x=func() involves calling func and writing the
return value of func to x.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

4 Checks

4-12

Examples

Multiple Tasks Call the Same Function

int var;

void begin_critical_section();

void end_critical_section();

void increment(void) {

 var++;

}

void task1(void) {

 increment();

}

void task2(void) {

 increment();

}

void task3(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Value

Entry points task1

task2

task3

Starting procedure Ending procedureCritical section details
begin_critical_section end_critical_section

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

 Data race

4-13

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Correction — Place Critical Section Inside Function Call

One possible correction is to place the operation var++ in a critical section. When task1
enters its critical section, the other tasks cannot enter their critical sections until task1
leaves its critical section. The operation var++ from the three tasks cannot interfere with
each other.

To implement the critical section, in the function increment, place the operation var++
between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section();

void end_critical_section();

void increment(void) {

 begin_critical_section();

 var++;

 end_critical_section();

}

void task1(void) {

 increment();

}

void task2(void) {

 increment();

}

void task3(void) {

 increment();

}

Correction — Place Critical Section Outside Function Call

Another possible correction is to call increment in the same critical section in the three
tasks. When task1 enters its critical section, the other tasks cannot enter their critical

4 Checks

4-14

sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section();

void end_critical_section();

void increment(void) {

 var++;

}

void task1(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

void task2(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

void task3(void) {

 begin_critical_section();

 increment();

 end_critical_section();

}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane:

1 Select Multitasking.
2 For Temporally exclusive tasks, enter task1 task2.

Check Information
Category: Other

 Data race

4-15

Language: C | C++
Default: On
Command-Line Syntax: data_race

See Also
“Find defects (C/C++)” | Data race including atomic operations | Deadlock | Double lock
| Double unlock | Missing lock | Missing unlock | “Target processor type (C)” | “Target
processor type (C++)”

More About
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

4 Checks

4-16

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variables

Description

Data race occurs when:

• Multiple tasks perform unprotected operations on a shared variable.
• At least one task performs a read operation and another task performs a write

operation.

The operations can be either atomic or non-atomic. For data race on non-atomic
operations alone, see Data race.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Data Race on Atomic Access

#include<stdio.h>

int var;

void begin_critical_section();

void end_critical_section();

void task1(void) {

 var = 1;

}

void task2(void) {

 int local_var;

 local_var = var;

 printf("%d", local_var);

}

void task3(void) {

 Data race including atomic operations

4-17

 begin_critical_section();

 var++;

 end_critical_section();

}

In this example, to emulate multitasking behavior, specify the following options:

Option Value

Entry points task1

task2

task3

Starting procedure Ending procedureCritical section details
begin_critical_section end_critical_section

In this example, the write operation var=1; in task task1 executes concurrently with
the read operation local_var=var; in task task2.

Correction — Use Critical Sections

One possible correction is to place the operations

• var=1; in task1
• local_var=var; in task2

in the same critical section. When task1 enters its critical section, the other tasks
cannot enter their critical sections until task1 leaves its critical section. Therefore, the
two operations cannot execute concurrently.

To implement the critical section, place the two operations between calls to
begin_critical_section and end_critical_section.

#include<stdio.h>

int var;

void begin_critical_section();

void end_critical_section();

void task1(void) {

 begin_critical_section();

 var = 1;

4 Checks

4-18

 end_critical_section();

}

void task2(void) {

 int local_var;

 begin_critical_section();

 local_var = var;

 end_critical_section();

 printf("%d", local_var);

}

void task3(void) {

 begin_critical_section();

 var++;

 end_critical_section();

}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane:

1 Select Multitasking.
2 For Temporally exclusive tasks, enter task1 task2.

Check Information
Category: Other
Language: C | C++
Default: Off
Command-Line Syntax: data_race_all

See Also
“Find defects (C/C++)” | Data race | Deadlock | Double lock | Double unlock | Missing
lock | Missing unlock

More About
• “Set Up Multitasking Analysis”

 Data race including atomic operations

4-19

• “Review Concurrency Defects”

4 Checks

4-20

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description
Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS

#1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies
between a call to a lock function and a call to an unlock function. When a task my_task
calls a lock function my_lock, other tasks calling my_lock must wait until my_task
calls the corresponding unlock function. Both lock and unlock functions must have the
form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Deadlock with Two Tasks

void task1(void);

void task2(void);

int var;

void perform_task_cycle(void) {

 var++;

}

void begin_critical_section_1(void);

void end_critical_section_1(void);

 Deadlock

4-21

void begin_critical_section_2(void);

void end_critical_section_2(void);

void task1() {

 while(1) {

 begin_critical_section_1();

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

void task2() {

 while(1) {

 begin_critical_section_2();

 begin_critical_section_1();

 perform_task_cycle();

 end_critical_section_1();

 end_critical_section_2();

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Entry points task1

task2

Starting procedure Ending procedure
begin_critical_section_1end_critical_section_1

Critical section details

begin_critical_section_2end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2

has already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 Checks

4-22

4 task2 reaches the instruction begin_critical_section_1();. Since task1
has already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);

void task2(void);

void perform_task_cycle(void);

void begin_critical_section_1(void);

void end_critical_section_1(void);

void begin_critical_section_2(void);

void end_critical_section_2(void);

void task1() {

 while(1) {

 begin_critical_section_1();

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

void task2() {

 while(1) {

 begin_critical_section_1();

 begin_critical_section_2();

 perform_task_cycle();

 end_critical_section_2();

 end_critical_section_1();

 }

}

Deadlock with More Than Two Tasks

int var;

void performTaskCycle() {

 Deadlock

4-23

 var++;

}

void lock1(void);

void lock2(void);

void lock3(void);

void unlock1(void);

void unlock2(void);

void unlock3(void);

void task1() {

 while(1) {

 lock1();

 lock2();

 performTaskCycle();

 unlock2();

 unlock1();

 }

}

void task2() {

 while(1) {

 lock2();

 lock3();

 performTaskCycle();

 unlock3();

 unlock2();

 }

}

void task3() {

 while(1) {

 lock3();

 lock1();

 performTaskCycle();

 unlock1();

 unlock3();

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

4 Checks

4-24

Option Value

Entry points task1

task2

task3

Starting procedure Ending procedure
lock1 unlock1

lock2 unlock2

Critical section details

lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1

2 lock2

3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

void performTaskCycle();

 Deadlock

4-25

void task1() {

 while(1) {

 lock1();

 lock2();

 performTaskCycle();

 unlock2();

 unlock1();

 }

}

void task2() {

 while(1) {

 lock2();

 lock3();

 performTaskCycle();

 unlock3();

 unlock2();

 }

}

void task3() {

 while(1) {

 lock1();

 lock3();

 performTaskCycle();

 unlock3();

 unlock1();

 }

}

Check Information
Category: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: deadlock

See Also
“Find defects (C/C++)” | Data race including atomic operations | Data race | Double lock
| Double unlock | Missing lock | Missing unlock

4 Checks

4-26

More About
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

 Dead code

4-27

Dead code
Code does not execute

Description
Dead code occurs when a block of code cannot be reached via any execution path. This
defect excludes:

• Code deactivated by constant false condition, which checks for directives
such as #if 0.

• Unreachable code, which checks for code after a control escape such as goto, break,
or return.

• Useless if, which checks for if statements that are always true.

Examples

Dead Code from if-Statement

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */

 for(int i=0;i<=4;i++){

 table[i]=i^2+i+1;

 }

 if(table[ch]>100){

 return 0; /*Defect: Condition always false */

 }

 return table[ch];

}

The maximum value in the array table is 4^2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

4 Checks

4-28

Correction — Remove Dead Code

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */

 for(int i=0;i<=4;i++){

 table[i]=i^2+i+1;

 }

 return table[ch];

}

Dead Code for if with Enumerated Type

typedef enum _suit {UNKNOWN, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS))

 card = UNKNOWN_SUIT;

 if (card > 7) {

 do_something(card);

 }

}

The type suit is enumerated with five options. However, the conditional expression
card > 7 always evaluates to false because card can be at most 5. The content in the
if statement is not executed.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to HEART to relate directly to the type of card.

 Dead code

4-29

typedef enum _suit {UNKNOWN, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS))

 card = UNKNOWN_SUIT;

 if (card > HEARTS) {

 do_something(card);

 }

}

Check Information
Category: Data-flow
Language: C | C++
Default: on
Command-Line Syntax: dead_code

See Also
“Find defects (C/C++)” | Code deactivated by constant false condition |
Unreachable code | Useless if

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-30

Deallocation of previously deallocated pointer
Memory freed more than once without allocation

Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Examples

Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return;

 *pi = 2;

 free(pi);

 free (pi);

 /* Defect: pi has already been freed */

}

The first free statement releases the block of memory that pi refers to. The second
free statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)

{

 Deallocation of previously deallocated pointer

4-31

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return;

 *pi = 2;

 free(pi);

 /* Fix: remove second deallocation */

 }

Check Information
Category: Dynamic memory
Language: C | C++
Default: on
Command-Line Syntax: double_deallocation

See Also
Use of previously freed pointer | “Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

4 Checks

4-32

Declaration mismatch
Mismatch between function or variable declarations

Description
Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Examples

Inconsistent Declarations in Two Files

file1.c

int foo(void) {

 return 1;

}

file2.c

double foo(void);

int bar(void) {

 return (int)foo();

}

In this example, file1.c declares foo() as returning an integer. In file2.c,foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {

 return 1;

}

 Declaration mismatch

4-33

file2.c

int foo(void);

int bar(void) {

 return foo();

}

Inconsistent Structure Alignment

test1.c

#include "square.h"

#include "circle.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

test2.c

#include "circle.h"

#include "square.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

circle.h

#pragma pack(1)

extern struct aCircle{

 int radius;

} circle;

square.h

extern struct aSquare {

 unsigned int side:1;

} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square.h does not have the same alignment as square in test2.c.
This error occurs because the #pragma pack(1) statement in circle.h declares specific
alignment. In test2.c, circle.h is included before square.h. Therefore, the #pragma
pack(1) statement from circle.h is not reset to the default alignment after the aCircle
structure. Because of this omission, test2.c infers that the aSquare square structure
also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

4 Checks

4-34

test1.c

#include "square.h"

#include "circle.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

test2.c

#include "circle.h"

#include "square.h"

struct aCircle circle;

struct aSquare square;

int main(){

 square.side=1;

 circle.radius=1;

 return 0;

}

circle.h

#pragma pack(1)

extern struct aCircle{

 int radius;

} circle;

#pragma pack()

square.h

extern struct aSquare {

 unsigned int side:1;

} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Category: Programming
Language: C | C++

 Declaration mismatch

4-35

Default: on
Command-Line Syntax: decl_mismatch

See Also
“Find defects (C/C++)” | “Ignore pragma pack directives (C++)” on page 2-13

More About
• “Programming Defects”
• “Review and Comment Results”

4 Checks

4-36

Double lock
Lock function is called twice in a task without an intermediate call to unlock function

Description

Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait until my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Lock

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

 Double lock

4-37

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

my_task enters a critical section through the call BEGIN_CRITICAL_SECTION();.
my_task calls BEGIN_CRITICAL_SECTION again before it leaves the critical section
through the call END_CRITICAL_SECTION();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to BEGIN_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 global_var += 1;

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

4 Checks

4-38

 global_var += 1;

 global_var += 1;

 END_CRITICAL_SECTION();

}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Double Lock with Function Call

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void performOperation(void) {

 BEGIN_CRITICAL_SECTION();

 global_var++;

}

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 performOperation();

 END_CRITICAL_SECTION();

}

 Double lock

4-39

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

my_task enters a critical section through the call BEGIN_CRITICAL_SECTION();.
my_task calls the function performOperation. In performOperation,
BEGIN_CRITICAL_SECTION is called again even though my_task has not left the critical
section through the call END_CRITICAL_SECTION();.

Correction — Remove Second Lock

One possible correction is to remove the call to BEGIN_CRITICAL_SECTION in my_task.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void performOperation(void) {

 global_var++;

}

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 performOperation();

 END_CRITICAL_SECTION();

}

Check Information
Category: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: double_lock

4 Checks

4-40

See Also
“Find defects (C/C++)” | Data race including atomic operations | Data race | Deadlock |
Double unlock | Missing lock | Missing unlock

More About
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

 Double unlock

4-41

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description

Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait until my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

4 Checks

4-42

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

my_task enters a critical section through the call BEGIN_CRITICAL_SECTION();.
my_task leaves the critical section through the call END_CRITICAL_SECTION();.
my_task calls END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 global_var += 1;

}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

 Double unlock

4-43

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 global_var += 1;

 END_CRITICAL_SECTION();

}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);

void END_CRITICAL_SECTION(void);

void my_task(void)

{

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

 BEGIN_CRITICAL_SECTION();

 global_var += 1;

 END_CRITICAL_SECTION();

}

Check Information
Category: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: double_unlock

See Also
“Find defects (C/C++)” | Data race including atomic operations | Data race | Deadlock |
Double lock | Missing lock | Missing unlock

More About
• “Set Up Multitasking Analysis”

4 Checks

4-44

• “Review Concurrency Defects”

 Float overflow

4-45

Float overflow
Overflow from operation between floating points

Description
Float overflow occurs when an operation on floating point variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different floating point types depends on your processor.
See “Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Multiplication of Floats

float square(void) {

 float val = FLT_MAX;

 return val * val;

}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

double square(void) {

 float val = FLT_MAX;

 return val * val;

}

Check Information
Category: Numerical

4 Checks

4-46

Language: C | C++
Default: off
Command-Line Syntax: float_ovfl

See Also
Integer overflow | Unsigned integer overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Float conversion overflow

4-47

Float conversion overflow
Overflow when converting between floating point data types

Description

Float conversion overflow occurs when converting a floating point number to a
smaller floating point data type. If the variable does not have enough memory to
represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See “Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Converting from double to float

float convert(void) {

 double diam = 1e100;

 return (float)diam;

}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: float_conv_ovfl

See Also
Integer conversion overflow | Unsigned integer conversion overflow | Sign change
integer conversion overflow | “Find defects (C/C++)”

4 Checks

4-48

More About
• “Numerical Defects”
• “Review and Comment Results”

 Float division by zero

4-49

Float division by zero

Dividing floating point number by zero

Description

Float division by zero occurs when the denominator of a division operation is a zero
and a floating point number.

Examples

Dividing a Floating Point Number by Zero

float fraction(float num)

{

 float denom = 0.0;

 float result = 0.0;

 result = num/denom;

 return result;

}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)

{

 float denom = 0.0;

 float result = 0.0;

 if(((int)denom) != 0)

 result = num/denom;

 return result;

}

4 Checks

4-50

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)

{

 float denom = 2.0;

 float result = 0.0;

 result = num/denom;

 return result;

}

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: float_zero_div

See Also
Integer division by zero | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Format string specifiers and arguments mismatch

4-51

Format string specifiers and arguments mismatch
String specifiers do not match corresponding arguments

Description

Format string specifiers and arguments mismatch occurs when the parameters in
the format specification do not match their corresponding arguments. For example, an
argument of type unsigned long must have a format specification of %lu.

Examples

Printing a Float

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);

}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);

}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

4 Checks

4-52

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);

}

Check Information
Category: Other
Language: C | C++
Default: on
Command-Line Syntax: string_format

See Also
Invalid use of standard library string routine | “Find defects (C/C++)”

More About
• “Other Defects”
• “Review and Comment Results”

External Web Sites
• Standard library output functions

http://en.cppreference.com/w/cpp/io/c/fprintf

 Integer overflow

4-53

Integer overflow
Overflow from operation between integers

Description

Integer overflow occurs when an operation on integer variables exceeds the space
available to represent the resulting value.

The exact storage allocation for different integer types depends on your processor. See
“Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Addition of Maximum Integer

int plusplus(void) {

 int var = INT_MAX;

 var++;

 return var;

}

In the third statement of this function, the variable var is increased by one. But the
value of var is the maximum integer value, so an int cannot represent one plus the
maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type. In this example, by returning a long instead of an int, the overflow
error is fixed.

long plusplus(void) {

 long lvar = INT_MAX;

 lvar++;

 return lvar;

4 Checks

4-54

}

Check Information
Category: Numerical
Language: C | C++
Default: off
Command-Line Syntax: int_ovfl

See Also
Unsigned integer overflow | Float overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Integer conversion overflow

4-55

Integer conversion overflow
Overflow when converting between integer types

Description

Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original constant, the
conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
“Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;

}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;

}

4 Checks

4-56

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: int_conv_ovfl

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign change integer
conversion overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Invalid deletion of pointer

4-57

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description

Invalid deletion of pointer occurs when a block of memory released using the delete
operator was not previously allocated with the new operator.

This defect applies only if the code language for the project is C++.

Examples

Bad Deletion Error

void Assign_Ones(void)

{

 int p[10];

 for(int i=0;i<10;i++)

 *(p+i)=1;

 delete[] p;

 /* Defect: p does not point to dynamically allocated memory */

}

The pointer p is released using the delete operator. However, p points to a memory
location that was not dynamically allocated.

Correction: Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

void Assign_Ones(void)

{

 int p[10];

 for(int i=0;i<10;i++)

4 Checks

4-58

 *(p+i)=1;

 /* Fix: Remove deallocation of p */

}

Correction — Introduce Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array p using the new operator.

void Assign_Ones(int num)

 {

 /* Fix: Allocate memory dynamically to p */

 int *p = new int[10];

 for(int i=0;i<10;i++)

 *(p+i)=1;

 delete[] p;

 }

Check Information
Category: Dynamic memory
Language: C++
Default: off
Command-Line Syntax: bad_delete

See Also
Invalid free of pointer | “Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

 Invalid use of == operator

4-59

Invalid use of == operator
Equality operation in assignment statement

Description

Invalid use of == operator occurs when an equality operator instead of an assignment
operator is used in a simple statement. A common correction is removing one of the equal
signs (=).

Examples

Equality Evaluation in for-Loop

void populate_array(void)

{

 int i = 0;

 int j = 0;

 int array[4];

 for (j == 5; j < 9; j++) {

 array[i] = j;

 i++;

 }

}

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of
setting j to 5. The for-loop iterates from 0 to 8 because j starts with a value of 0, not
5. A by-product of the invalid equality operator is an out-of-bounds array access in the
next line.

Correction — Change to Assignment Operator

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.

void populate_array(void)

4 Checks

4-60

{

 int i = 0;

 int j = 0;

 int array[4];

 for (j = 5; j < 9; j++) {

 array[i] = j;

 i++;

 }

}

Check Information
Category: Programming
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: bad_equal_equal_use

See Also
Invalid use of = operator | “Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

 Invalid use of = operator

4-61

Invalid use of = operator
Assignment in control statement

Description

Invalid use of = operator occurs when an assignment is made inside a logical
statement, such as if or while. Use the equals operator as an assignment operator, not
to determine equality. A common correction for this defect is adding a second equal sign
(==).

Examples

Assignment in an if-Statement

#include <stdio.h>

void equality_test(int alpha, int beta)

{

 if(alpha = beta){

 printf("Equal\n");

 }

}

The equal sign is flagged as a defect because the assignment operator is used within
the if-statement. Due to the single equal sign, the statement assigns the value beta to
alpha, then determines the logical value of alpha.

Correction — Equality Operator in if-Statement

One possible correction is adding an additional equal sign. This correction changes the
assignment operator to an equality operator. The if-statement evaluates the equality
between alpha and beta.

#include <stdio.h>

void equality_test(int alpha, int beta)

{

4 Checks

4-62

 if(alpha == beta){

 printf("Equal\n");

 }

}

Correction — Assignment Inside an if-Statement

If an assignment must be made inside a control statement, one possible correction is
clarifying the control statement. This correction assigns the value of beta to alpha, and
determines if alpha is nonzero.

#include <stdio.h>

void equality_test(int alpha, int beta)

{

 if((alpha = beta) != 0){

 printf("Equal\n");

 }

}

Check Information
Category: Programming
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: bad_equal_use

See Also
Invalid use of == operator | “Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

 Invalid use of floating point operation

4-63

Invalid use of floating point operation
Imprecise comparison of floating point variables

Description

Invalid use of floating point operation occurs when you use an equality (==) or
inequality (!=) operation with floating point numbers. It is possible that the equality or
inequality of two floating point values is not exact because floating point representation
can be imprecise.

There are two situations when Polyspace does not flag floating point comparison: when
one of the operands is 0.0 because zero can be represented exactly, and when comparing
a variable against itself such as foo == foo or foo != foo.

Examples

Two Equal Floats

float onePointOne(void) {

 float flt = 1.0;

 if (flt == 1.1)

 return flt;

 return 0;

}

In this function, the if-statement tests the equality of flt and the number 1.1. Even
though the equality in this function is obvious (1.0 is not equal to 1.1), longer floating
point values are not quite so simple. Do not use equality with floating points because it
can produce unexpected behavior.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an
inequality like > or <.

float onePointOne(void) {

 float flt = 1.0;

4 Checks

4-64

 if (fabs(flt-1.1) < Epilson)

 return flt;

 return 0;

}

Correction — Change the Operands

Another possible correction is to change the operands to more precise data types. In this
example, using integers instead of floats corrects the error.

int onePointOne(void) {

 int flt = 1;

 if (flt == 1)

 return flt;

 return 0;

}

Check Information
Category: Programming
Language: C | C++
Default: off
Command-Line Syntax: bad_float_op

See Also
“Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

 Invalid free of pointer

4-65

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description

Invalid free of pointer occurs when a block of memory released using the free
function was not previously allocated using malloc, calloc, or realloc.

Examples

Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)

{

 int p[10];

 for(int i=0;i<10;i++)

 *(p+i)=1;

 free(p);

 /* Defect: p does not point to dynamically allocated memory */

}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)

 {

 int p[10];

 for(int i=0;i<10;i++)

4 Checks

4-66

 *(p+i)=1;

 /* Fix: Remove deallocation of p */

 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)

{

 int *p;

 /* Fix: Allocate memory dynamically to p */

 p=(int*) calloc(10,sizeof(int));

 for(int i=0;i<10;i++)

 *(p+i)=1;

 free(p);

}

Check Information
Category: Dynamic Memory
Language: C | C++
Default: on
Command-Line Syntax: bad_free

See Also
Invalid deletion of pointer | “Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

 Invalid use of standard library floating point routine

4-67

Invalid use of standard library floating point routine

Wrong arguments to standard library function

Description

Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod

• Fractions and division routines

fmod, modf

• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10

• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,

asinh, atanh

Examples

Arc Cosine Operation

double arccosine(void) {

 double degree = 5.0;

 return acos(degree);

}

The input value to acos must be in the interval [-1,1]. This input argument, degree,
is outside this range.

4 Checks

4-68

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

double arccosine(void) {

 double degree = 5.0;

 double radian = degree*180/(3.14159);

 return acos(radian);

}

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: float_std_lib

See Also
Invalid use of standard library integer routine | Invalid use of standard library memory
routine | Invalid use of standard library string routine | Invalid use of standard library
routine | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Invalid use of standard library integer routine

4-69

Invalid use of standard library integer routine

Wrong arguments to standard library function

Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower

• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv

• Absolute Values

abs, labs

Examples

Absolute Value of Large Negative

int absoluteValue(void) {

 int neg = INT_MIN;

 return abs(neg);

}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

4 Checks

4-70

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

int absoluteValue(void) {

 int neg = INT_MIN+1;

 return abs(neg);

}

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: int_std_lib

See Also
Invalid use of standard library floating point routine | Invalid use of standard library
memory routine | Invalid use of standard library string routine | Invalid use of standard
library routine | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Invalid use of standard library memory routine

4-71

Invalid use of standard library memory routine
Standard library memory function called with invalid arguments

Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments.

Examples

Invalid Use of Standard Library Memory Routine Error

#include <string.h>

#include <stdio.h>

char* Copy_First_Six_Letters(void)

 {

 char str1[10],str2[5];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;

 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>

#include <stdio.h>

4 Checks

4-72

char* Copy_First_Six_Letters(void)

 {

 /* Fix: Declare str2 with size 6 */

 char str1[10],str2[6];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 return str2;

 }

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: mem_std_lib

See Also
Invalid use of standard library string routine | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

 Invalid use of standard library string routine

4-73

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description

Invalid use of standard library string routine occurs when a string library function
is called with invalid arguments.

Examples

Invalid Use of Standard Library String Routine Error

 #include <string.h>

 #include <stdio.h>

 char* Copy_String(void)

 {

 char *res;

 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 /* Error: Size of text is less than gbuffer */

 return(res);

 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>

 #include <stdio.h>

 char* Copy_String(void)

4 Checks

4-74

 {

 char *res;

 /*Fix: gbuffer has equal or larger size than text */

 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);

 }

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: str_std_lib

See Also
Invalid use of standard library memory routine | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

 Integer division by zero

4-75

Integer division by zero
Dividing integer number by zero

Description

Integer division by zero occurs when the denominator of a division operation is a zero.

Examples

Dividing an Integer by Zero

int fraction(int num)

{

 int denom = 0;

 int result = 0;

 result = num/denom;

 return result;

}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)

{

 int denom = 0;

 int result = 0;

 if (denom != 0)

 result = num/denom;

 return result;

}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

4 Checks

4-76

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)

{

 int denom = 2

 int result = 0;

 result = num/denom;

 return result;

}

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: int_zero_div

See Also
Integer division by zero | Float division by zero | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Large pass-by-value argument

4-77

Large pass-by-value argument
Large argument passed between functions by value

Description

Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value. For variables larger than 64 bytes, pass the value
by pointer or by reference to save stack space and copy time.

Examples

Passing a Large struct Between Functions

typedef struct s_userid {

 char name[2];

 int idnumber[100];

} userid;

char username(userid first) {

 return first.name[0];

}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

Correction — Pass-By-Reference

One possible correction is to pass the argument by reference instead of by value. In this
example, the pointer to a userid structure is passed instead of the actual structure.

typedef struct s_userid {

 char name[2];

 int idnumber[100];

} userid;

char username(userid *first) {

 return (*first).name[0];

}

4 Checks

4-78

Check Information
Category: Other
Language: C | C++
Default: off
Command-Line Syntax: pass_by_value

See Also
“Find defects (C/C++)”

More About
• “Other Defects”
• “Review and Comment Results”

 Line with more than one statement

4-79

Line with more than one statement
Multiple statements on a line

Description

Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Examples

Single-Line Initialization

int multi_init(void){

_ int abc = 4; int efg = 0; //defect

 return abc*efg;

}

In this example, abc and efg are initialized on the second line of the function as
separate statements.

Correction — Comma-Separated Initialization

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.

int multi_init(void){

 int a = 4, b = 0;

 return a*b;

}

Correction — New Line for Each Initialization

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.

4 Checks

4-80

int multi_init(void){

 int a = 4;

 int b = 0;

 return a*b;

}

Single-Line Loops

int multi_loop(void){

 int a, b = 0;

 int index = 1;

 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

_ for(b=0; b < 3; b++) {a+=b; index=b;} //defect

_ while (index < 7) {index++; tab[index] = index * index;} //defect

 return a*b;

}

In this example, there are three loops coded on single lines, each with multiple
semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

• Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

Correction — New Line for Each Loop Statement

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){

 int a, b = 0;

 int index = 1;

 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

 Line with more than one statement

4-81

 for(b=0; b < 3; b++){

 a+=b;

 index=b;

 }

 while (index < 7){

 index++;

 tab[index] = index * index;

 }

 return a*b;

}

Single-line Conditionals

int multi_if(void){

 int a, b = 1;

 if(a == 0) { a++;} // no defect

_ else if(b == 1) {b++; a *= b;} //defect

}

In this example, there are two conditional statements an: if and an else if. The if
line does not raise a defect because only one statement follows the condition. The else
if statement does raise a defect because two statements follow the condition.

Correction — New Lines for Multi-Statement Conditionals

One possible correction is to use a new line for conditions with multiple statements.

int multi_if(void){

 int a, b = 1;

 if(a == 0) a++;

 else if(b == 1){

 b++;

 a *= b;

 }

}

Check Information
Category: Other
Language: C | C++

4 Checks

4-82

Default: off
Command-Line Syntax: more_than_one_statement

See Also
“Find defects (C/C++)”

More About
• “Other Defects”
• “Review and Comment Results”

 Memory leak

4-83

Memory leak

Memory allocated dynamically not freed

Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, or realloc. If the memory is allocated in a function func, the defect does not
occur if:

• Within func, you free the memory using the free function.
• func returns the pointer assigned by malloc, calloc, or realloc.

Examples

Memory Leak Error

#include<stdlib.h>

#include<stdio.h>

void assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return;

 }

 *pi = 42;

 /* Defect: pi is not freed */

 }

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

4 Checks

4-84

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>

#include<stdio.h>

void assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return;

 }

 *pi = 42;

 /* Fix: Free the pointer pi*/

 free(pi);

}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>

#include<stdio.h>

int* assign_memory(void)

{

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL)

 {

 printf("Memory allocation failed");

 return(pi);

 }

 *pi = 42;

 /* Fix: Return the pointer pi*/

 return(pi);

}

 Memory leak

4-85

Check Information
Category: Dynamic memory
Language: C | C++
Default: off
Command-Line Syntax: mem_leak

See Also
“Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

4 Checks

4-86

Missing lock
Unlock function without lock function

Description

Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Missing lock

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void)

{

 global_var += 1;

 end_critical_section();

}

In this example, to emulate multitasking behavior, you must specify the following
options:

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
begin_critical_section end_critical_section

 Missing lock

4-87

my_task calls end_critical_section before calling begin_critical_section.

Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before the
instructions in the critical section.

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

 end_critical_section();

}

Lock in Condition

int global_var;

void reset() {

 global_var=0;

}

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 if(index%10==0) {

 begin_critical_section();

 global_var ++;

 reset();

 }

 end_critical_section();

 index++;

 }

}

In this example, to emulate multitasking behavior, you must specify the following
options:

4 Checks

4-88

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
begin_critical_section end_critical_section

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Check Information
Category: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: bad_unlock

See Also
“Find defects (C/C++)” | Data race including atomic operations | Data race | Deadlock |
Double lock | Double unlock | Missing unlock

More About
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

 Missing unlock

4-89

Missing unlock
Lock function without unlock function

Description

Missing unlock occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Examples

Missing Unlock

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

}

In this example, to emulate multitasking behavior, specify the following options:

Option Value

Entry points my_task

4 Checks

4-90

Option Value

Starting procedure Ending procedureCritical section details
begin_

critical_section

end_ critical_section

my_task enters a critical section through the call begin_critical_section();.
my_task ends without calling end_critical_section.

Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void)

{

 begin_critical_section();

 global_var += 1;

 end_critical_section();

}

Unlock in Condition

int global_var;

void reset() {

 global_var=0;

}

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 reset();

 Missing unlock

4-91

 end_critical_section();

 }

 index++;

 }

}

In this example, to emulate multitasking behavior, specify the following options.

Option Value

Entry points my_task

Starting procedure Ending procedureCritical section details
begin_

critical_section

end_ critical_section

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside
the if condition.

int global_var;

void reset() {

 global_var=0;

}

void begin_critical_section(void);

void end_critical_section(void);

4 Checks

4-92

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 reset();

 }

 end_critical_section();

 index++;

 }

}

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

int global_var;

void reset() {

 global_var=0;

}

void begin_critical_section(void);

void end_critical_section(void);

void my_task(void) {

 int index=0;

 volatile int numCycles;

 while(numCycles) {

 begin_critical_section();

 global_var ++;

 if(index%10==0) {

 reset();

 end_critical_section();

 }

 else

 end_critical_section();

 index++;

 }

}

 Missing unlock

4-93

Check Information
Category: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: bad_lock

See Also
“Find defects (C/C++)” | Data race including atomic operations | Data race | Deadlock |
Double lock | Double unlock | Missing lock

More About
• “Set Up Multitasking Analysis”
• “Review Concurrency Defects”

4 Checks

4-94

Missing null in string array

String does not terminate with null character

Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'. This defect can cause various memory errors in
your code, so is important to fix it.

This defect applies only for projects in C.

Examples

Array size is too small

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[5] = "THREE";

}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[6] = "THREE";

}

 Missing null in string array

4-95

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)

{

 static char one[5] = "ONE";

 static char two[5] = "TWO";

 static char three[] = "THREE";

}

Check Information
Category: Programming
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: missing_null_char

See Also
“Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

4 Checks

4-96

Missing or invalid return statement
Function does not return value though return type is not void

Description

Missing or invalid return statement occurs when a function does not return a value
along at least one execution path. If the return type of the function is void, this error
does not occur.

Examples

Missing or invalid return statement error

int AddSquares(int n)

 {

 int i=0;

 int sum=0;

 if(n!=0)

 {

 for(i=1;i<=n;i++)

 {

 sum+=i^2;

 }

 return(sum);

 }

 }

/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Paths

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)

 {

 Missing or invalid return statement

4-97

 int i=0;

 int sum=0;

 if(n!=0)

 {

 for(i=1;i<=n;i++)

 {

 sum+=i^2;

 }

 return(sum);

 }

 /*Fix: Place a return statement on branches of if-else */

 else

 return 0;

 }

Check Information
Category: Data-flow
Language: C | C++
Default: on
Command-Line Syntax: missing_return

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-98

Non-initialized pointer
Pointer not initialized before dereference

Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Examples

Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)

{

 int j = 42;

 int* pi;

 if (prev == NULL)

 {

 pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return NULL;

 }

 *pi = j;

 /* Defect: Writing to uninitialized pointer */

 return pi;

}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

 Non-initialized pointer

4-99

#include <stdlib.h>

int* assign_pointer(int* prev)

{

 int j = 42;

 int* pi;

 if (prev == NULL)

 {

 pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return NULL;

 }

 /* Fix: Initialize pi in branches of if statement */

 else

 pi = prev;

 *pi = j;

 return pi;

}

Check Information
Category: Data-flow
Language: C | C++
Default: on
Command-Line Syntax: non_init_ptr

See Also
Non-initialized variable | “Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-100

Non-initialized variable
Variable not initialized before use

Description

Non-initialized variable occurs when a variable is not initialized before its value is
read.

Examples

Non-initialized variable error

int get_sensor_value(void)

{

 extern int getsensor(void);

 int command;

 int val;

 command = getsensor();

 if (command == 2)

 {

 val = getsensor();

 }

 return val;

 /* Defect: val does not have a value if command is not 2 */

}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that only its value is
dependant on different execution paths.

int get_sensor_value(void)

{

 Non-initialized variable

4-101

 extern int getsensor(void);

 int command;

 /* Fix: Initialize val */

 int val=0;

 command = getsensor();

 if (command == 2)

 {

 val = getsensor();

 }

 return val;

 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Category: Data-flow
Language: C | C++
Default: on
Command-Line Syntax: non_init_var

See Also
Non-initialized pointer | “Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-102

Null pointer
NULL pointer dereferenced

Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Examples

Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)

{

 int* p=NULL;

 *p=arr[0];

 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)

 {

 if(arr[i] > (*p))

 *p=arr[i];

 }

 return *p;

}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

 Null pointer

4-103

int FindMax(int *arr, int Size)

{

 /* Fix: Assign address to null pointer */

 int* p=&arr[0];

 for(int i=0;i<Size;i++)

 {

 if(arr[i] > (*p))

 *p=arr[i];

 }

 return *p;

}

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: null_ptr

See Also
Arithmetic operation with NULL pointer | Non-initialized pointer | “Find defects (C/C+
+)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

4 Checks

4-104

Invalid use of standard library routine
Wrong arguments to standard library function

Description

Invalid use of standard library routine occurs when you use invalid arguments
with a function from the standard library. This defect picks up errors related to other
functions not covered by float, integer, memory, or string standard library routines.

Examples

Calling printf Without a String

void print_null(void) {

 printf(NULL);

}

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

Correction — Use Compatible Input Arguments

One possible correction is to change the input arguments to fit the requirements of
the standard library routine. In this example, the input argument was changed to a
character.

void print_null(void) {

 char zero_val = '0';

 printf(zero_val);

}

Check Information
Category: Other
Language: C | C++
Default: on

 Invalid use of standard library routine

4-105

Command-Line Syntax: other_std_lib

See Also
Invalid use of standard library integer routine | Invalid use of standard library floating
point routine | Invalid use of standard library memory routine | Invalid use of standard
library string routine | “Find defects (C/C++)”

More About
• “Other Defects”
• “Review and Comment Results”

4 Checks

4-106

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its
bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Examples

Pointer access out of bounds error

int* Initialize(void)

{

 int arr[10];

 int *ptr=arr;

 for (int i=0; i<=9;i++)

 {

 ptr++;

 *ptr=i;

 /* Defect: ptr out of bounds for i=9 */

 }

 return(arr);

}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

 Pointer access out of bounds

4-107

int* Initialize(void)

{

 int arr[10];

 int *ptr=arr;

 for (int i=0; i<=9;i++)

 {

 /* Fix: Dereference pointer before increment */

 *ptr=i;

 ptr++;

 }

 return(arr);

}

After the last increment, even though ptr points outside the memory block assigned to
it, it is not dereferenced more.

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: out_bound_ptr

See Also
Array access out of bounds | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

4 Checks

4-108

Pointer to non-initialized value converted to const
pointer

Pointer to constant assigned address that does not contain a value

Description

Pointer to non initialized value converted to const pointer occurs when a pointer
to a constant is assigned an address that does not yet contain a value.

Examples

Pointer to non initialized value converted to const pointer error

#include<stdio.h>

void Display_Parity()

 {

 int num,parity;

 const int* num_ptr = #

 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");

 scanf("%d",&num);

 parity=((*num_ptr)%2);

 if(parity==0)

 printf("The number is even.");

 else

 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

 Pointer to non-initialized value converted to const pointer

4-109

Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()

 {

 int num,parity;

 const int* num_ptr;

 printf("Enter a number\n:");

 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */

 num_ptr=#

 parity=((*num_ptr)%2);

 if(parity==0)

 printf("The number is even.");

 else

 printf("The number is odd.");

 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

Check Information
Category: Data-flow
Language: C | C++
Default: off
Command-Line Syntax: non_init_ptr_conv

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”

4 Checks

4-110

• “Review and Comment Results”

 Partially accessed array

4-111

Partially accessed array
Array partly read or written before end of scope

Description

Partially accessed array occurs when an array is partially read or written before
the end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Examples

Partially accessed array error

int Calc_Sum(void)

{

 int tab[5]={0,1,2,3,4},sum=0;

 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating
sum, tab[4] is not included.

Correction — Access Every Array Element

One possible correction is to read every element in the array tab.

int Calc_Sum(void)

{

 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */

4 Checks

4-112

 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Check Information
Category: Data-flow
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: partially_accessed_array

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

 Qualifier removed in conversion

4-113

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description

Qualifier removed in conversion occurs during a conversion when one variable has a
qualifier and the other does not. For example, when converting from a const int to an
int, the conversion removes the const qualifier.

This defect applies only for projects in C.

Examples

Cast of Character Pointers

void implicit_cast(void) {

 const char cc, *pcc = &cc;

 char * quo;

 quo = &cc;

 quo = pcc;

 read(quo);

}

During the assignment to the character q, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

Correction — Add Qualifiers

One possible correction is to add the same qualifiers to the new variables. In this
example, changing q to a const char fixes the defect.

void implicit_cast(void) {

 const char cc, *pcc = &cc;

 const char * quo;

4 Checks

4-114

 quo = &cc;

 quo = pcc;

 read(quo);

}

Correction — Remove Qualifiers

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the
defect.

void implicit_basic_cast(void) {

 char cc, *pcc = &cc;

 char * quo;

 quo = &cc;

 quo = pcc;

 read(quo);

}

Check Information
Category: Programming
Language: C | C++
Default: off
Command-Line Syntax: qualifier_mismatch

See Also
“Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

 Shift of a negative value

4-115

Shift of a negative value
Shift operator on negative value

Description

Shift of a negative value occurs when a bit-wise shift is used on a negative number.
Shifts can overwrite the sign bit that identifies a number as negative.

Examples

Shifting a negative variable

int shifting(int val)

{

 int res = -1;

 return res << val;

}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)

{

 unsigned int res = -1;

 return res << val

}

Check Information
Category: Numerical
Language: C | C++

4 Checks

4-116

Default: off
Command-Line Syntax: shift_neg

See Also
Shift operation overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Shift operation overflow

4-117

Shift operation overflow
Overflow from shifting operation

Description
Shift operation overflow occurs when a shift operation exceeds the space available to
represent the resulting value.

The exact storage allocation for different data types depends on your processor. See
“Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Left Shift of Integer

int left_shift(void) {

 int foo = 33;

 return 1 << foo;

}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long instead of an int, the overflow defect is fixed.

long left_shift(void) {

 int foo = 33;

 return 1 << foo;

}

Check Information
Category: Numerical

4 Checks

4-118

Language: C | C++
Default: off
Command-Line Syntax: shift_ovfl

See Also
“Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Sign change integer conversion overflow

4-119

Sign change integer conversion overflow

Overflow when converting between signed and unsigned integers

Description

Sign change integer conversion overflow occurs when converting an unsigned
integer to a signed integer. If the variable does not have enough bytes to represent both
the original constant and the sign bit, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
“Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Convert from unsigned char to char

char sign_change(void) {

 unsigned char count = 255;

 return (char)count;

}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {

 unsigned char count = 255;

 return (int)count;

}

4 Checks

4-120

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: sign_change

See Also
Float conversion overflow | Unsigned integer conversion overflow | Integer conversion
overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Uncalled function

4-121

Uncalled function

Function with static scope not called in file

Description

Uncalled function occurs when a static function is not called in the same file where it
is defined.

Examples

Uncalled function error

Save the following code in the file Initialize_Value.c

#include <stdlib.h>

#include <stdio.h>

static int Initialize(void)

/* Defect: Function not called */

 {

 int input;

 printf("Enter an integer:");

 scanf("%d",&input);

 return(input);

 }

 void main()

 {

 int num;

 num=0;

 printf("The value of num is %d",num);

 }

The static function Initialize is not called in the file Initialize_Value.c.

4 Checks

4-122

Correction — Call Function at Least Once

One possible correction is to call Initialize at least once in the file
Initialize_Value.c.

#include <stdlib.h>

#include <stdio.h>

static int Initialize(void)

 {

 int input;

 printf("Enter an integer:");

 scanf("%d",&input);

 return(input);

 }

 void main()

 {

 int num;

 /* Fix: Call static function Initialize */

 num=Initialize();

 printf("The value of num is %d",num);

 }

Check Information
Category: Data-flow
Language: C | C++
Default: off
Command-Line Syntax: uncalled_func

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

 Unprotected dynamic memory allocation

4-123

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL value

Description

Unprotected dynamic memory allocation occurs when the code does not check
whether or not the dynamic memory allocation succeeded.

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for the NULL value, this access is not
protected from failures.

Examples

Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)

{

 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;

 /* Defect: p is not checked for NULL value */

 free(p);

}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

4 Checks

4-124

void Assign_Value(void)

 {

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */

 if(p!=NULL) *p = 2;

 free(p);

 }

Check Information
Category: Dynamic memory
Language: C | C++
Default: off
Command-Line Syntax: unprotected_memory_allocation

See Also
“Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

 Unreachable code

4-125

Unreachable code

Code following control-flow statements

Description

Unreachable code defects occur on code which follow statements that change the flow
of the code, for example break, goto, or return. These statements move the flow of
the program to another section or function. Because of this flow escape, the statements
following the control-flow code, statistically, do not execute, and therefore the statements
are not reachable.

Examples

Unreachable code after return

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 return card;

 if (card < HEARTS) {

 guess(card);

 }

 return card;

}

In this example, the first return statement changes the flow of code back to where
the function was called. Because of this return statement, the if-block and return
statement do not execute.

4 Checks

4-126

Correction — Remove return

One possible correction is to remove the escape statement. In this example, remove the
first return statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 if (card < HEARTS) {

 guess(card);

 }

 return card;

}

Correction — Remove unreachable code

Another possible correction is to remove the unnecessary code. Because the function does
not reach the second if-statement, removing it simplifies the code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void guess(suit s);

suit deal(void){

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 return card;

}

Check Information
Category: Data-flow
Language: C | C++
Default: on

 Unreachable code

4-127

Command-Line Syntax: unreachable

See Also
“Find defects (C/C++)” | Code deactivated by constant false condition |
Dead code | Useless if

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-128

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description

Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of function pointer error

#include <math.h>

#include <stdio.h>

#define PI 3.142

double Calculate_Sum(int (*fptr)(double))

{

 double sum = 0.0;

 double y;

 for (int i = 0; i <= 100; i++)

 {

 y = (*fptr)(i*PI/100);

 sum += y;

 }

 return sum / 100;

}

int main(void)

{

 double (*fp)(double);

 double sum;

 fp = sin;

 sum = Calculate_Sum(fp);

 Unreliable cast of function pointer

4-129

 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);

 return 0;

}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <math.h>

#include <stdio.h>

define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/

double Calculate_Sum(double (*fptr)(double))

{

 double sum = 0.0;

 double y;

 for (int i = 0; i <= 100; i++)

 {

 y = (*fptr)(i*PI/100);

 sum += y;

 }

 return sum / 100;

}

int main(void)

{

 double (*fp)(double);

 double sum;

 fp = sin;

 sum = Calculate_Sum(fp);

 printf("sum(sin): %f\n", sum);

 return 0;

4 Checks

4-130

}

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: func_cast

See Also
“Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

 Unreliable cast of pointer

4-131

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description

Unreliable cast of pointer occurs when a pointer is implicitly cast to a data type
different from its declaration type. Such an implicit casting can take place, for instance,
when a pointer to data type char is assigned the address of an integer.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of pointer error

 #include <string.h>

 void Copy_Integer_To_String()

 {

 int src[]={1,2,3,4,5,6,7,8,9,10};

 char buffer[]="Buffer_Text";

 strcpy(buffer,src);

 /* Defect: Implicit cast of (int*) to (char*) */

 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer,
implicitly casts src to char*.

Correction — Avoid Pointer Cast

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>

 void Copy_Integer_To_String()

 {

 /* Fix: Declare src with same type as buffer */

 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};

 char *buffer[10];

4 Checks

4-132

 for(int i=0;i<10;i++)

 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)

 buffer[i]= src[i];

 }

Check Information
Category: Static memory
Language: C | C++
Default: on
Command-Line Syntax: ptr_cast

See Also
Unreliable cast of function pointer | “Find defects (C/C++)”

More About
• “Static Memory Defects”
• “Review and Comment Results”

 Unsigned integer conversion overflow

4-133

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description

Unsigned integer conversion overflow occurs when converting an unsigned integer
to a smaller unsigned integer type. If the variable does not have enough bytes to
represent the original constant, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
“Target processor type (C)” on page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Converting from int to char

unsigned char convert(void) {

 unsigned int unum = 1000000U;

 return (unsigned char)unum;

}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value
plus 1. In this example, unum is reduced by modulo 2^8 because a character data type
can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {

 unsigned int unum = 1000000U;

4 Checks

4-134

 return (unsigned long)unum;

}

Check Information
Category: Numerical
Language: C | C++
Default: on
Command-Line Syntax: uint_conv_ovfl

See Also
Float conversion overflow | Integer conversion overflow | Sign change integer conversion
overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Unsigned integer overflow

4-135

Unsigned integer overflow
Overflow from operation between unsigned integers

Description

Unsigned integer overflow occurs when an operation on unsigned integer variables
exceeds the space available to represent the resulting value. The exact storage allocation
for different integer types depends on your processor. See “Target processor type (C)” on
page 1-5 or “Target processor type (C++)” on page 2-2.

Examples

Add One to Maximum Unsigned Integer

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;

 uvar++;

 return uvar;

}

In the third statement of this function, the variable uvar is increased by 1. However,
the value of uvar is the maximum unsigned integer value, so 1 plus the maximum
integer value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is
reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long instead of an unsigned int, the overflow
error is fixed.

unsigned long plusplus(void) {

 unsigned uvar = UINT_MAX;

4 Checks

4-136

 unsigned long ulvar = uvar++;

 return ulvar;

}

Check Information
Category: Numerical
Language: C | C++
Default: off
Command-Line Syntax: uint_ovfl

See Also
Integer overflow | Float overflow | “Find defects (C/C++)”

More About
• “Numerical Defects”
• “Review and Comment Results”

 Useless if

4-137

Useless if
Unnecessary if conditional

Description
Useless if occurs on if-statements where the condition is always true. This defect occurs
only on if-statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code
execution if the if-statement is removed.

Examples

if with Enumerated Type

typedef enum _suit {UNKNOWN, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 if (card < 7) {

 do_something(card);

 }

}

The type suit is enumerated with five options. However, the conditional expression
card < 7 always evaluates to true because card can be at most 5. The if statement is
unnecessary.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to UNKNOWN_SUIT to relate directly to the type of card.

4 Checks

4-138

typedef enum _suit {UNKNOWN, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 if (card > UNKNOWN_SUIT) {

 do_something(card);

 }

}

Correction — Remove If

Another possible correction is to remove the if-condition in the code. Because the
condition is always true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN, SPADES, HEARTS, DIAMONDS, CLUBS} suit;

suit nextcard(void);

void do_something(suit s);

void bridge(void)

{

 suit card = nextcard();

 if ((card < SPADES) || (card > CLUBS)){

 card = UNKNOWN_SUIT;

 }

 do_something(card);

}

Check Information
Category: Data-flow
Language: C | C++
Default: on
Command-Line Syntax: useless_if

 Useless if

4-139

See Also
“Find defects (C/C++)” | Code deactivated by constant false condition |
Dead code | Unreachable code

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-140

Use of previously freed pointer
Memory accessed after deallocation

Description

Use of previously freed pointer occurs when a block of memory is accessed after it is
freed using the free function.

Examples

Use of Previously Freed Pointer Error

#include <stdlib.h>

#include <stdio.h>

 int increment_content_of_address(int base_val, int shift)

 {

 int j;

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return 0;

 *pi = base_val;

 free(pi);

 j = *pi + shift;

 /* Defect: Reading a freed pointer */

 return j;

 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

int increment_content_of_address(int base_val, int shift)

 Use of previously freed pointer

4-141

{

 int j;

 int* pi = (int*)malloc(sizeof(int));

 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;

 *pi = 0;

 /* Fix: The pointer is freed after its last use */

 free(pi);

 return j;

}

Check Information
Category: Dynamic memory
Language: C | C++
Default: on
Command-Line Syntax: freed_ptr

See Also
Deallocation of previously deallocated pointer | “Find defects (C/C++)”

More About
• “Dynamic Memory Defects”
• “Review and Comment Results”

4 Checks

4-142

Variable shadowing
Variable hides another variable of same name with nested scope

Description

Variable shadowing occurs when a variable hides another variable of the same name
with nested scope.

Examples

Variable Shadowing Error

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)

 {

 int fact=1;

 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)

 fact*=i;

 return(fact);

 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

 Variable shadowing

4-143

int factorial(int n)

 {

 /* Fix: Change name of local variable */

 int f=1;

 for(int i=1;i<=n;i++)

 f*=i;

 return(f);

 }

Check Information
Category: Data-flow
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: var_shadowing

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-144

Write without further read
Variable never read after assignment

Description

Write without further read occurs when a value assigned to a variable is never read.

Examples

Write Without Further Read Error

void sensor_amplification(void)

{

 extern int getsensor(void);

 int level;

 level = 4 * getsensor();

 /* Defect: Useless write */

}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

void sensor_amplification(void)

{

 extern int getsensor(void);

 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */

 printf('The value is %d', level)

}

 Write without further read

4-145

The variable level is printed, reading the new value.

Check Information
Category: Data-flow
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: useless_write

See Also
“Find defects (C/C++)”

More About
• “Data-flow Defects”
• “Review and Comment Results”

4 Checks

4-146

Wrong allocated object size for cast

Allocated memory does not match destination pointer

Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is unaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Examples

Dynamic Allocation of Pointers

void dyn_non_align(void){

 void *ptr = malloc(13);

 long *dest;

 dest = (long*)ptr; //defect

}

In this example, the software raises a defect on the conversion of ptr to a long* in line
5. The dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of
dest, 4 bytes. This misalignment causes the Wrong allocated object size for cast
defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the allocated memory to 12 instead of 13.

void dyn_non_align(void){

 void *ptr = malloc(12);

 long *dest;

 dest = (long*)ptr;

}

 Wrong allocated object size for cast

4-147

Static Allocation of Pointers

void static_non_align(void){

 char arr[13], *ptr;

 int *dest;

 ptr = &arr[0];

 dest = (int*)ptr; //defect

}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiplie of 13. This misalignment causes the
Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the size of the array arr to a multiple of
4.

void static_non_align(void){

 char arr[12], *ptr;

 int *dest;

 ptr = &arr[0];

 dest = (int*)ptr;

}

Allocation with a Function

void *my_alloc(int size) {

 void *ptr_func = malloc(size);

 if(ptr_func == NULL) exit(-1);

 return ptr_func;

}

void fun_non_align(void){

 int *dest1;

 char *dest2;

 dest1 = (int*)my_alloc(13); //defect

 dest2 = (char*)my_alloc(13); //not a defect

4 Checks

4-148

}

In this example, the software raises a defect on the conversion of the pointer returned
by my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In
line 12, the same function call, my_alloc(13), does not call a defect for the conversion
to dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size.
In this example, resolve the defect by changing the argument for my_alloc to a multiple
of 4.

void *my_alloc(int size) {

 void *ptr_func = malloc(size);

 if(ptr_func == NULL) exit(-1);

 return ptr_func;

}

void fun_non_align(void){

 int *dest1;

 char *dest2;

 dest1 = (int*)my_alloc(12);

 dest2 = (char*)my_alloc(13);

}

Check Information
Category: Static Memory
Language: C | C++
Default: off
Command-Line Syntax: object_size_mismatch

See Also
Unreliable cast of pointer | “Find defects (C/C++)”

More About
• “Static Memory Defects”

 Wrong allocated object size for cast

4-149

• “Review and Comment Results”

4 Checks

4-150

Wrong type used in sizeof

sizeof argument does not match pointer type

Description

Wrong type used in sizeof occurs when the size specified for the block of memory does
not match the pointer type being initialized.

Examples

Allocate a Char Array With sizeof

void test_case_1(void) {

 char* str;

 str = malloc(sizeof(char*) * 5);

 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of
five char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

void test_case_1(void) {

 char* str;

 str = malloc(sizeof(char) * 5);

 free(str);

}

 Wrong type used in sizeof

4-151

Check Information
Category: Programming
Language: C | C++
Default: on for handwritten code, off for generated code
Command-Line Syntax: ptr_sizeof_mismatch

See Also
“Find defects (C/C++)”

More About
• “Programming Defects”
• “Review and Comment Results”

5

Functions

5 Functions

5-2

pslinkfun
Manage model analysis at the command line

Syntax

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)

prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')

pslinkfun('enablebacktomodel')

pslinkfun('help')

pslinkfun('metrics')

pslinkfun('jobmonitor')

pslinkfun('stop')

Description

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a priority classification, an action status, or
other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

 pslinkfun

5-3

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:Fix>*/

annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;

/* polyspace:end<RTE:OVFL:Medium:Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated
with the model or subsystem systemName in the Polyspace environment. If analysis
results do not exist for systemName, Polyspace opens to the Project Browser pane.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the
Simulink plug-in. If your Polyspace results do not properly link to back to the model
blocks, run this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use
this option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

5 Functions

5-4

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option
for local analyses only.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

In the example model WhereAreTheErrors_v2, add an annotation to the switch block for
MISRA C rule 13.7 violations with a comment, a classification, and a status.

model = 'WhereAreTheErrors_v2';

open(model)

pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...

 'WhereAreTheErrors_v2/Switch1','status','fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the
results in the Polyspace environment:

slbuild(model)

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

opts.VerificationSettings = 'PrjConfigAndMisra';

pslinkrun(model,opts)

pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to
the switch block. The annotations appear in the Status and Comment columns.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors_v2 and open the advanced options window.

model = 'WhereAreTheErrors_v2';

 pslinkfun

5-5

load_system(model)

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the options Batch and Add to results
repository.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...

 'WhereAreTheErrors_v2_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =

C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_v2_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors_v2, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors_v2';

load_system(model)

slbuild(model)

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the Batch and Add to results repository
options.

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)

pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

5 Functions

5-6

pslinkfun('metrics')

Input Arguments

typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• ‘DEFECT’ for defects.
• ‘MISRA-C’ for MISRA C coding rule violations (C code only).
• ‘MISRA-AC-AGC’ for MISRA C coding rule violations (C code only).
• ‘MISRA-CPP’ for MISRA C++ coding rule violations (C++ code only).
• ‘JSF’ for JSF C++ coding rule violations (C++ code only).

Example: ‘type’,'MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values

‘DEFECT’ Use the abbreviation associated with the type of defect that you
want to annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Polyspace Bug Finder
Results”.

‘MISRA-C’ Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 Coding Rules”.

‘MISRA-AC-AGC’ Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 Coding Rules”.

 pslinkfun

5-7

type Value kind Values

‘MISRA-CPP’ Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“MISRA C++ Coding Rules”.

‘JSF’ Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')

Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors_v2')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If psprjFile
is empty, Polyspace uses the standard Polyspace template file. New Polyspace projects
start with this project configuration.
Example: pslinkfun('settemplate',fullfile(matlabroot,
'polyspace','examples','cxx','Bug_Finder_Example','Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘block’,’MyModel\Sum’, ‘status’,’fix’

5 Functions

5-8

'block' — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.

Example: 'block','MyModel\Sum'

'class' — classification of the check
'high' | 'medium' | 'low' | 'not a defect' | 'unset'

Classification of the check specified as high, medium, low, not a defect, or unset.

Example: 'class','high'

'status' — action status
'undecided' | 'investigate' | 'fix' | 'improve' | 'restart with different
options' | 'justify with annotation' | 'no action planned' | 'other'

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

Example: 'status','no action planned'

'comment' — additional comments
string

Additional comments specified as a string. The comments provide more information
about why the results are justified.
Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkoptions

5-9

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax

opts = pslinkoptions(codegen)

opts = pslinkoptions(model)

Description

opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace options object from the model:

load_system('psdemo_model_link_sl_v2');

model_opt = pslinkoptions('psdemo_model_link_sl_v2')

model_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

5 Functions

5-10

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder, so only the Embedded Coder
configuration options appear.

Change the results folder name option and set OpenProjectManager to true

model_opt.ResultDir = 'results_v1_$ModelName$';

model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace options object called new_opt with Embedded Coder parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 pslinkoptions

5-11

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C
coding rule violations:

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace options object called new_opt with TargetLink parameters:

new_opt = pslinkoptions('tl')

new_opt =

5 Functions

5-12

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 0

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C
coding rule violations:

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 0

Input Arguments

codegen — Code generator
'ec' | 'tl'

 pslinkoptions

5-13

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: ec_opt = pslinkoptions('ec')

Example: tl_opt = pslinkoptions('tl')

Data Types: char

model — Simulink model
model name

Simulink model, specified by the model name. Creates a Polyspace options object with
the configuration options of that model. If you do not set any options, the object has the
default configuration options. If a code generator has been set, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: model_opt = pslinkoptions('my_model')

Data Types: char

Output Arguments

opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions Properties.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

5 Functions

5-14

More About
• pslinkoptions Properties

See Also
pslinkfun | pslinkrun

 pslinkrun

5-15

pslinkrun
Run Polyspace analysis on generated code from MATLAB command line

Syntax
resultsFolder = pslinkrun

resultsFolder = pslinkrun(system)

resultsFolder = pslinkrun(system,opts)

resultsFolder = pslinkrun(system,opts,asModelRef)

Description
resultsFolder = pslinkrun on generated code from the current system and returns
the location of the results folder. It uses the analysis options associated with the current
system. The current system, or model, is the system returned by the command bdroot.

resultsFolder = pslinkrun(system) runs Polyspace on the code generated from
the model or subsystem specified by system. It uses the analysis options associated with
system.

resultsFolder = pslinkrun(system,opts) analyzes system using the analysis
options from the options object opts.

resultsFolder = pslinkrun(system,opts,asModelRef) uses asModelRef to
specify which type of generated code to analyze, standalone code or model reference code.
This option is useful when you want to analyze only a referenced model instead of an
entire model hierarchy.

Examples
Run Polyspace from the Command Line

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

Load and build the model WhereAreTheErrors_v2 to generate code.

model = 'WhereAreTheErrors_v2';

5 Functions

5-16

load_system(model)

slbuild(model)

Create a Polyspace options object from the model and change the configuration to run a
Bug Finder analysis.

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

Run Polyspace using your options object:

results = pslinkrun(model,opts)

The results are saved to the results_WhereAreTheErrors_v2 folder, listed in the
results variable.

Build and Analyze Referenced Model Code from the Command Line

Use a Simulink model to generate reference code, set configuration options, and then run
an analysis from the command line.

Load and build the model WhereAreTheErrors_v2 to generate code as if it is referenced
by another model:

model = 'WhereAreTheErrors_v2';

load_system(model)

slbuild(model,'ModelReferenceRTWTargetOnly')

Create a Polyspace options object from the model and change the configuration to run a
Bug Finder analysis.

opts = pslinkoptions(model);

opts.VerificationMode = 'BugFinder';

Run Polyspace using your options object:

results = pslinkrun(model,opts,true)

The results are saved to the results_mr_WhereAreTheErrors_v2 folder, listed in the
results variable.

Input Arguments
system — Model or system
bdroot (default) | model or system name

 pslinkrun

5-17

Model or system that you want to analyze, specified as a string, with the model or system
name in single quotes. The default value is the system returned by bdroot.

Example: resultsFolder = pslinkrun('demo') where demo is the name of a model.

Data Types: char

opts — Analysis options
options associated with system (default) | Polyspace options object

Analysis options for the analysis, specified as an options object or the options already
associated with the model or system. The function pslinkoptions creates an options
object. You can customize the options object by changing the
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code generated as standalone
code. This option is equivalent to choosing Verify Code Generated For > Model in
the Simulink Polyspace options.

• If asModelRef is true, Polyspace analyzes code generated as model referenced code.
This option is equivalent to choosing Verify Code Generated For > Referenced
Model in the Simulink Polyspace options.

Data Types: logical

Output Arguments

resultsFolder — Variable for location of the results folder
string

Variable for location of the results folder, specified as a string. The default value of this
variable is results_$ModelName$. You can change this value in the configuration
options using pslinkoptions.

Data Types: char

5 Functions

5-18

See Also
pslinkfun | pslinkoptions

 polyspaceBugFinder

5-19

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Syntax

polyspaceBugFinder

polyspaceBugFinder(projectFile)

polyspaceBugFinder(resultsFile)

polyspaceBugFinder('-results-dir',resultsFolder)

polyspaceBugFinder('-help')

polyspaceBugFinder('-sources',sourceFiles)

polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description

polyspaceBugFinder opens Polyspace Bug Finder.

polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more
Name,Value pair arguments.

5 Functions

5-20

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Bug_Finder_Example.psprj from
the folder Matlab_Install\polyspace\examples\cxx\Bug_Finder_Example.

Assign the full path to the project file to a MATLAB variable prjFile.

prjFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...

 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');

Use prjFile to open the project.

polyspaceBugFinder(prjFile)

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder Matlab_Install\polyspace\examples\cxx
\Bug_Finder_Example\Results.

Assign the full path to the folder to a MATLAB variable resFolder.

resFolder = fullfile(matlabroot, 'polyspace', 'examples', ...

 'cxx', 'Bug_Finder_Example', 'Results');

Use resFolder to open the results.

polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis from MATLAB

This example shows how to run a Polyspace analysis from the MATLAB command-line.
For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Run the following command on the MATLAB command line.

polyspaceBugFinder('-sources','C:\Polyspace_Sources\source.c', ...

 polyspaceBugFinder

5-21

 '-I','C:\Polyspace_Includes', ...

 '-results-dir','C:\Polyspace_Results')

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

To view the results from the MATLAB command line, enter:

polyspaceBugFinder('-results-dir','C:\')

Run Polyspace Verification with Coding Rules Checking

This example shows how to run a Polyspace verification with additional options. You
can specify as many additional options as you want as “Name-Value Pair Arguments”
on page 5-22. Here you specify checking of MISRA C coding rules using the option -
misra2. For more information on this option, see “Check MISRA C:2004”.

Assign the source file path to a MATLAB variable sourceFileName.

sourceFileName = fullfile(matlabroot, 'polyspace',...

'examples', 'cxx', 'Bug_Finder_Example','sources','dataflow.c')

Assign the results folder path to a MATLAB variable resFolder.

resFolder = fullfile('C:\','Polyspace_Results')

Run Polyspace Bug Finder analysis with additional option -misra2.

polyspaceBugFinder('-sources',sourceFileName,...

 '-results-dir',resFolder,'-misra2','required-rules')

Open the results file.

polyspaceBugFinder('-results-dir',resFolder)

• “Specify Options from MATLAB Command Line”

Input Arguments

projectFile — Name of .psprj file
string

Name of project file with extension .psprj, specified as a string.

5 Functions

5-22

If the file is not in the current folder, projectFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.

Example: 'C:\Polyspace_Projects\myProject.psprj'

resultsFile — Name of .psbf file
string

Name of results file with extension .psbf, specified as a string.

If the file is not in the current folder, resultsFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.

Example: 'myResults.psbf'

resultsFolder — Name of result folder
string

Name of result folder, specified as a string. The folder must contain the results file with
extension .psbf. If the results file resides in a subfolder of the specified folder, this
command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.

Example: 'C:\Polyspace\Results\'

sourceFiles — Comma-separated names of .c or .cpp files
string

Comma-separated source file names with extension .c or .cpp, specified as a single
string.

If the files are not in the current folder, sourceFiles must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.

Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 polyspaceBugFinder

5-23

Example: '-OS-target','Linux','-dialect','gnu4.6' specifies that the source
code is intended for the Linux operating system and contains non-ANSI C syntax for the
GCC 4.6 dialect.

• For options that can also be set from the user interface, see the Command-Line
Information section in:

• “Analysis Options for C”
• “Analysis Options for C++”

• For options that cannot be set from the user interface, see the Polyspace Analysis
Options section in “Command-Line Invocation”.

5 Functions

5-24

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure buildCommand -option value

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure buildCommand -option value traces your build system and
uses the flag -option value to modify the default operation of polyspaceConfigure.

Examples
Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...

 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceBugFinder('myProject.psprj')

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use

 polyspaceConfigure

5-25

polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -no-project -output-options-file ...

 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinder -options-file myOptions

Trace Incremental Makefile Builds

This example shows how to trace incremental makefile builds to keep your Polyspace
project updated. If you use this approach, polyspaceConfigure does not have to trace
the entire makefile every time you make a change to it.

Create a Polyspace project from your makefile using polyspaceConfigure. For this
first project creation:

• Use the -B or -W makefileName option with make so that all prerequisite targets in
the makefile are remade.

For the list of options allowed with the GNU make, see make options.
• Use the -incremental option so that the build trace information is saved.

polyspaceConfigure -prog myProject ...

 -incremental make -B targetName buildOptions

After you add, remove or change source files, to keep your Polyspace project updated,
rerun polyspaceConfigure with the same options. Do not use the -B or -W
makefileName option with make.

polyspaceConfigure -prog myProject ...

 -incremental make targetName buildOptions

The polyspaceConfigure function uses the previous build trace information to
incrementally add or remove the updated files to your Polyspace project. It does not trace
the entire makefile.

• “Create Project Automatically”

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

5 Functions

5-26

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

Option Argument Description

-author Author name Name of project author.

Example: -author jsmith
-code-prover (default) | -
bug-finder

None Option to create a Polyspace Bug Finder or
Polyspace Code Prover project.

-debug None Option used by MathWorks technical support
-help None Option to display the full list of

polyspaceConfigure commands
-lang auto(default)

|c|cpp
Option to specify source code language. By
default,polyspaceConfigure detects the
language. If it detects a mixture of languages
in the compilation units, it assigns C++ as the
project language. If it detects the use of C++11,
it allows C++11 extensions.

-output-options-file None Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspaceBugFinder.

-output-project Path Project file name and location for saving project.
The default is the file polyspace.psprj in the
current folder.

Example: -output-project ../
myProjects/project1

 polyspaceConfigure

5-27

Option Argument Description

-prog Project name Project name that appears in the Polyspace user
interface. The default is polyspace.

Example: -prog myProject
-silent (default) | -
verbose

None Option to suppress or display additional
messages from running polyspaceConfigure.

Advanced Options

Option Argument Description

-compiler-config Path and file
name

Location and name of compiler configuration file.

The file must be in a specific format. For
guidance, see the existing configuration files
in matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Your Compiler Is
Not Supported”.

Example: -compiler-configuration
myCompiler.xml

-incremental None Option to save build trace information for reuse
in incremental builds

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspaceConfigure with the -no-project
option.

If you use this option, you do not need to specify
the buildCommand argument.

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

5 Functions

5-28

Option Argument Description

Use this option to save your build
trace information for a later run of
polyspaceConfigure with the -no-build
option.

-tmp-path Path Location of folder where temporary files are
stored.

Cache Control Options

Option Argument Description

-build-trace Path and file
name

Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-no-cache | -cache-
sources (default) | -cache-
all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache

More About
• “Requirements for Project Creation from Build Systems”
• “Your Compiler Is Not Supported”

 polyspaceJobsManager

5-29

polyspaceJobsManager
Manage Polyspace jobs on MDCS cluster

Syntax

polyspaceJobsManager('listjobs')

polyspaceJobsManager('cancel','-job',jobNumber)

polyspaceJobsManager('remove','-job',jobNumber)

polyspaceJobsManager('getlog','-job',jobNumber)

polyspaceJobsManager('wait','-job',jobNumber)

polyspaceJobsManager('promote','-job',jobNumber)

polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description

polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

5 Functions

5-30

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example
uses the myMJS@myCompany.com scheduler. When you perform this example, replace
this scheduler with your own cluster name.

Set up your source files.

mkdir 'C:\psdemo\src'

demo = fullfile(matlabroot,'polyspace','examples','cxx',...

'Bug_Finder_Example','sources');

copyfile(demo,'C:\psdemo\src\')

Submit two jobs to your scheduler.

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com

 -sources C:\psdemo\src*.c'

 -results-dir 'C:\psdemo\res1'

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com

 -sources 'C:\psdemo\src\numeric.c'

 -results-dir 'C:\psdemo\res2'

 -add-to-results-repository

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 queued Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 queued Wed Mar 16 16:48:38 EST 2014 C Batch

If your jobs have not started running, promote the second job to run before the first job.

 polyspaceJobsManager

5-31

polyspaceJobsManager('promote','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 cancelled Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 running Wed Mar 16 16:48:38 EST 2014 C Batch

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

20 user Polyspace C:\psdemo\res2 completed Wed Mar 16 16:48:38 EST 2014 C Batch

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Download the information from job 20.

polyspaceJobsManager('download','-job','20','-results-folder', ...

 'C:\psdemo\res3','-scheduler','myCluster')

Input Arguments

jobNumber — Queued job number
string

Number of the queued job that you want to manage, specified as a string in single quotes.
Example: '-job','10'

5 Functions

5-32

resultsFolder — Path to results folder
string

Path to results folder specified as a string in single quotes. This folder stores the
downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your MDCS cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MDCS cluster (NodeHost).
• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

More About
• “Clusters and Cluster Profiles”
• “Run Remote Analysis at Command Line”

See Also
polyspaceBugFinder

 PolyspaceAnnotation

5-33

PolyspaceAnnotation
Annotate Simulink blocks with known Polyspace results

Compatibility

PolyspaceAnnotation will be removed in a future release. Use
pslinkfun('annotations',...) instead.

Syntax

PolyspaceAnnotation('type',typeValue,'kind',kindValue,Name,Value)

Description

PolyspaceAnnotation('type',typeValue,'kind',kindValue,Name,Value)adds
an annotation of type typeValue and kind kindValue to the currently selected block in
the model. You can also specify a different block using a Name,Value pair argument. You
can also add notes about a priority classification, an action status, or other comments
using Name,Value pairs.

In the generated code associated with the annotated block, code comments are added
before and after the lines of code. Polyspace reads these comments and marks Polyspace
results of the specified kind with the annotated information.

When you add annotations, you can identify known errors and coding rule violations to
focus on new results.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

5 Functions

5-34

At the MATLAB command line, load and open the example model
WhereAreTheErrors_v2:

WhereAreTheErrors_v2

Add an annotation to the switch block to annotate violations to MISRA C rule 13.7. Also,
add to the annotation a comment, a classification, and a status.

PolyspaceAnnotation('type','Misra-C', 'kind', '13.7','block',...

'WhereAreTheErrors_v2/Switch1','status','improve','comment','look into later');

In the WhereAreTheErrors_v2 model in Simulink, you can see a Polyspace annotation
added to the switch block.

At the MATLAB command line, generate code for the model:

slbuild('WhereAreTheErrors_v2')

Run an analysis on your model:

pslinkrun('WhereAreTheErrors_v2')

After the analysis is finished, open the results in the Polyspace environment:

PolySpaceViewer('WhereAreTheErrors_v2')

Results 10–14 are MISRA C 13.7 rule violations. The annotation information that you
added to the switch block appears in these four results, because all four results are from
the switch block.

Input Arguments

typeValue — type of result
'MISRA-C' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• ‘MISRA-C’ for MISRA C coding rule violations (C code only).
• ‘MISRA-CPP’ for MISRA C++ coding rule violations (C++ code only).
• ‘JSF’ for JSF C++ coding rule violations (C++ code only).

Example: ‘type’,'MISRA-C'

 PolyspaceAnnotation

5-35

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

Type Value Kind Values

‘MISRA-C’ Use the rule number you want to annotate. For example, '2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 Coding Rules”.

‘MISRA-CPP’ Use the rule number you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“MISRA C++ Coding Rules”.

‘JSF’ Use the rule number you want to annotate. For example, '3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: PolyspaceAnnotation('type','MISRA-CPP','kind','1-2-3')

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘block’,’MyModel\Sum’, ‘status’,’fix’

'block' — block to be annotated
gcb (default) | block name

Block to be annotated specified by the block name. If you do not use this option, the block
returned by the function gcb is annotated.

Example: 'block','MyModel\Sum'

5 Functions

5-36

'class' — classification of the check
'high' | 'medium' | 'low' | 'not a defect' | 'unset'

Classification of the check specified as high, medium, low, not a defect, or unset.

Example: 'class','high'

'status' — action status
'undecided' | 'investigate' | 'fix' | 'improve' | 'restart with different
options' | 'justify with annotation' | 'no action planned' | 'other'

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

Example: 'status','no action planned'

'comment' — additional comments
string

Additional comments specified as a string. The comments provide more information
about why the results are justified.
Example: 'comment','defensive code'

Limitations
• You can have only one annotation per block. If a block produces both a rule violation

and an error, only one type can be annotation.
• Even though you apply annotations to individual blocks, the scope of the annotation

may be larger. The generated code from one block can overlap with another causing
the annotation to also overlap.

For example, consider this model and its associated generated code.

 PolyspaceAnnotation

5-37

/*

* polyspace:begin<RTE:OVFL:Medium:Fix>

*/

annotate_y.Out1 = (annotate_u.In1 + annotate_U.In2) + annotate_U.In3;

/* polyspace:end<RTE:OVFL:Medium:Fix> */

The first summation block has a Polyspace annotation, but the second does not.
However, the associated generated code adds all three inputs in one line of code.
Therefore, the annotation justifies both summations

See Also
pslinkoptions | pslinkrun | PolySpaceViewer | gcb

5 Functions

5-38

PolySpaceViewer
Open analysis results in the Polyspace environment

Compatibility

PolySpaceViewer will be removed in a future release. Use
pslinkfun('openresults',...) instead.

Syntax

PolySpaceViewer(system)

Description

PolySpaceViewer(system) opens the Polyspace results associated with the model
or subsystem system in the Polyspace environment. If system has not been analyzed,
Polyspace opens to the Project Browser pane.

Examples

Open Results in the Polyspace environment from the Command Line

Use the preconfigured model WhereAreTheErrors_v2 to run a Polyspace analysis and
open the results in the Polyspace environment.

Load the model WhereAreTheErrors_v2:

load_system('WhereAreTheErrors_v2')

Open the Polyspace Viewer:

PolySpaceViewer('WhereAreTheErrors_v2')

The Polyspace environment opens to the Project Browser pane because the model does
not yet have Polyspace results.

 PolySpaceViewer

5-39

Build the model to generate C code:

slbuild('WhereAreTheErrors_v2');

Create a Polyspace options object to set the configuration options:

config = pslinkoptions('WhereAreTheErrors_v2')

config =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {0x1 cell}

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 VerificationMode: 'CodeProver'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

Change the analysis options to also check for MISRA coding rule violations:

config.VerificationSettings = 'PrjConfigAndMisra';

Change the analysis options to run a Bug Finder analysis:

config.VerificationMode = 'BugFinder';

config =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {0x1 cell}

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 VerificationMode: 'BugFinder'

 ModelRefVerifDepth: 'Current model only'

5 Functions

5-40

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

Run Polyspace on WhereAreTheErrors_v2 using the configuration options object that
you created:

pslinkrun('WhereAreTheErrors_v2', config);

Open the results in the Polyspace user interface:

PolySpaceViewer('WhereAreTheErrors_v2');

The analysis results of WhereAreTheErrors_v2 appear in the Polyspace user interface.

Input Arguments

system — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: PolySpaceViewer(‘myModel’)

See Also
pslinkoptions | pslinkrun | PolyspaceAnnotation

 pslinkoptions Properties

5-41

pslinkoptions Properties
Properties for the pslinkoptions object

Before running Polyspace from the command-line, use these properties to customize your
analysis.

Analysis Configuration

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Use all options from the project configuration.
• 'PrjConfigAndMisraAGC' – Use all options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Use all options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Use all options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation

and rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = ‘BugFinder’;

5 Functions

5-42

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.
Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .prprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration file
during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the verification starts.
The configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'{'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be
either an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

 pslinkoptions Properties

5-43

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new results. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true
or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.

5 Functions

5-44

Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};

Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.

Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not use assertions, or 'DesignMinMax'
to apply assertions to outputs using a range defined in blocks and workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Depth of verification specified by the model reference level to which you want to analyze.

Only for Embedded Coder

 pslinkoptions Properties

5-45

Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder

Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit all options from project configuration and run complete
analysis.

• 'PrjConfigAndMisraCxx' – Inherit all options from project configuration, enable
MISRA C++ rule checking, and run complete analysis.

• 'PrjConfigAndJSF' – Inherit all options from project configuration, enable JSF rule
checking, and run complete analysis.

• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder

Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage specified as true, to use Lookup Table code during the
analysis, or false, to not.

Only for TargetLink

5 Functions

5-46

Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

6

MISRA C 2012

6 MISRA C 2012

6-2

MISRA C:2012 Directive 4.1
Run-time failures shall be minimized

Description

Rule Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Specification

This directive is checked through the Polyspace analysis.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

Run-time failures shall be minimized.

Check Information
Group: Code Design

 MISRA C:2012 Directive 4.1

6-3

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 |
MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-4

MISRA C:2012 Directive 4.3
Assembly language shall be encapsulated and isolated

Description

Rule Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Specification

Polyspace does not raise a warning on assembly language code encapsulated in asm
functions or in asm pragmas.

Message in Report

Assembly language shall be encapsulated and isolated

Check Information
Group: Code Design
Category: Required

 MISRA C:2012 Directive 4.3

6-5

AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-6

MISRA C:2012 Directive 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Rule Definition

typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification

Polyspace does not issue a warning for the typedef definition.

Message in Report

typedefs that indicate size and signedness should be used in place of the basic numerical
types

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Directive 4.6

6-7

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-8

MISRA C:2012 Directive 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Rule Definition

A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Specification

Polyspace raises a warning on all function-like macro definitions.

Message in Report

A function should be used in preference to a function-like macro where they are
interchangeable

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7

 MISRA C:2012 Directive 4.9

6-9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-10

MISRA C:2012 Directive 4.10

Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description

Rule Definition

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once. This situation can be a source
of confusion. If this multiple inclusion leads to multiple or conflicting definitions, then
your program can have undefined or erroneous behavior.

Polyspace Specification

Try to prevent multiple inclusions when a header file is formatted as:

#ifndef <control macro>

#define <control macro>

 contents

#endif

or

#ifdef <control macro>

#error ...

#else

#define <control macro>

 contents

#endif

Otherwise, Polyspace flags the inclusion as non-compliant.

 MISRA C:2012 Directive 4.10

6-11

Message in Report

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-12

MISRA C:2012 Directive 4.11
The validity of values passed to library functions shall be checked

Description

Rule Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them.
Even if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Specification

Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt

• tan

• pow

• log

• log10

• fmod

• acos

• asin

 MISRA C:2012 Directive 4.11

6-13

• acosh

• atanh

• or atan2

Message in Report

The validity of values passed to library functions shall be checked

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-14

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Specification

Standard compilation error messages do not lead to a violation of this MISRA rule.

Message in Report

• Too many nesting levels of #includes: N1. The limit is N0.
• Integer constant is too large.
• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.
• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Check Information
Group: Standard C Environment

 MISRA C:2012 Rule 1.1

6-15

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-16

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Specification

All the supported extensions lead to a violation of this MISRA rule.

Message in Report

• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.
• ANSI C90 forbids __func__ predefined identifier.

 MISRA C:2012 Rule 1.2

6-17

• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-18

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report

There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 1.3

6-19

Introduced in R2014b

6 MISRA C 2012

6-20

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code
can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

A project shall not contain unreachable code.

Check Information
Group: Unused Code
Category: Required

 MISRA C:2012 Rule 2.1

6-21

AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-22

MISRA C:2012 Rule 2.2
There shall be no dead code

Description

Rule Definition

There shall be no dead code.

Rationale

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Polyspace Specification

Polyspace checks for useless writes during the Polyspace Bug Finder analysis.

Message in Report

There shall be no dead code.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 17.7

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 2.2

6-23

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-24

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report

A project should not contain unused type declarations: type XX is not used.

Examples

Unused Local Type

int16_t unusedtype (void){

 typedef int16_t local_Type;

 return 67;

}

In this function, typedef defines local_Type as a new local type, but this type is never
used in the function.

Correction — Use local_Type

One possible correction is to use local_Type as part of the function.

 MISRA C:2012 Rule 2.3

6-25

int16_t unusedtype (void){

 typedef int16_t local_Type;

 local_Type temp_var = 67;

 return temp_var;

}

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-26

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition

A project should not contain unused tag declarations.

Rationale

If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report

A project should not contain unused tag declarations: tag tag_name is not used.

Examples

Unused struct Tag

typedef struct record_t

{

 uint16_t key;

 uint16_t val;

} record1_t;

In this example, the tag record_t is used only in the typedef of record1_t, which is
used in the rest of the translation unit whenever the type is needed.

Correction — Define struct Without a Tag

This typedef can be written in a compliant manner by omitting the tag.

typedef struct

 MISRA C:2012 Rule 2.4

6-27

{

 uint16_t key;

 uint16_t val;

} record1_t;

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-28

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Examples

Unused Macro Definition

void use_macro (void)

{

 #define SIZE 4

 #define DATA 3

 use_int16(SIZE);

}

In this example, the macro DATA is never used within this function.

Correction — Use DATA in a Function Call

One possible correction is to use DATA as part of a function call.

 MISRA C:2012 Rule 2.5

6-29

void use_macro (void)

{

 #define SIZE 4

 #define DATA 3

 use_int16(SIZE);

 use_int32(DATA);

}

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-30

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition

The character sequences /* and // shall not be used within a comment.

Rationale

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Specification

You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code for Rule Violations”.

Message in Report

The character sequence /* shall not appear within a comment.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 3.1

6-31

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-32

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out
of code.

Message in Report

Line-splicing shall not be used in // comments.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 3.2

6-33

Introduced in R2014b

6 MISRA C 2012

6-34

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed
by other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report

Octal and hexadecimal escape sequences shall be terminated.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 4.1

6-35

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-36

MISRA C:2012 Rule 4.2

Trigraphs should not be used

Description

Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note: Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Specification

The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

Message in Report

Trigraphs should not be used.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 4.2

6-37

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-38

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first
31 characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 5.1

6-39

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-40

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description
Message in Report: Identifier XX has same significant characters as identifier YY.

Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Identifier XX has same significant characters as identifier YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 | MISRA
C:2012 Rule 5.5

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 5.2

6-41

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-42

MISRA C:2012 Rule 5.3

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale

If two identifiers have the same name but different scope, the identifier in the inner
scope hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Variable XX hides variable XX (FILE line LINE column COLUMN).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 5.3

6-43

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-44

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

• Macro identifiers shall be distinct. Macro XX has same significant characters as
macro YY.

• Macro identifiers shall be distinct. Macro parameter XX has same significant
characters as macro parameter YY in macro ZZ.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5

 MISRA C:2012 Rule 5.4

6-45

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-46

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition

Identifiers shall be distinct from macro names.

Rationale

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Identifier XX has same significant characters as macro YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 5.5

6-47

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-48

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition

A typedef name shall be a unique identifier.

Rationale

Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report

XX conflicts with the typedef name YY.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.6

6-49

Introduced in R2014b

6 MISRA C 2012

6-50

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Message in Report

XX conflicts with the tag name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.7

6-51

Introduced in R2014b

6 MISRA C 2012

6-52

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such
identifiers are not unique, they are not likely to cause confusion.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.3

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 5.8

6-53

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-54

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Specification

This rule checker assumes that rule 5.8 is not violated.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.9

6-55

Introduced in R2014b

6 MISRA C 2012

6-56

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report

Bit-fields shall only be declared with an appropriate type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 6.1

6-57

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-58

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Specification

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report

Single-bit named bit fields shall not be of a signed type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 6.2

6-59

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-60

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description

Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Message in Report

Octal constants shall not be used.

Examples

Use of octal constants

#define CST 021

#define VALUE 010 /* Compliant - constant not used */

#if 010 == 01 /* Non-Compliant - constant used */

#define CST 021 /* Compliant - constant not used */

#endif

extern short code[5];

static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {

 int value1 = 0; /* Compliant */

 int value2 = 01; /* Non-Compliant - decimal 01 */

 int value3 = 1; /* Compliant */

 MISRA C:2012 Rule 7.1

6-61

 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */

 code[2] = 100; /* Compliant - decimal 100 */

 code[3] = 052; /* Non-Compliant - decimal 42 */

 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */

 value1 = !(value1 != 0); /* Compliant */

 }

}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-62

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 7.2

6-63

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-64

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report

The lowercase character “l” shall not be used in a literal suffix.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.4

6-65

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char

Description

Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Examples

Incorrect Assignment of String Literal

char *str1 = "AccountHolderName";

const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */

void checkAccount2(const char*); /* Compliant */

void main() {

6 MISRA C 2012

6-66

 checkAccount1("AccountHolderName"); /* Non-Compliant */

 checkAccount2("AccountHolderName"); /* Compliant */

}

In this example, the rule is not violated when string literals are assigned to const
char* pointers, either directly or through copy of function arguments. The rule is
violated only when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.1

6-67

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition

Types shall be explicitly specified.

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the
int type is implicitly specified. Examples of potential circumstances in which you can
use an implicit int are:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

The omission of an explicit type can lead to confusion. For example, in the declaration
extern void foo (char c, const k);, the type of k is const int, but const
char might have been expected.

Message in Report

Types shall be explicitly specified.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

6 MISRA C 2012

6-68

Language: C90

See Also
MISRA C:2012 Rule 8.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.2

6-69

MISRA C:2012 Rule 8.2

Function types shall be in prototype form with named parameters

Description

Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The mismatch between the number of arguments and parameters, their types, and the
expected and actual return type of a function provides potential for undefined behavior.
This rule also requires that you specify names for all the parameters in a declaration.
The parameter names provide useful information regarding the function interface. A
mismatch between a declaration and definition can indicate a programming error.

Polyspace Specification

Polyspace also checks the function definition.

Message in Report

• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

6 MISRA C 2012

6-70

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.3

6-71

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using types and qualifiers across declarations of the same object or function
encourages stronger typing. By specifying parameter names in function prototypes,
Polyspace can check for interface consistency between the function definition and
declarations.

Polyspace Specification

Polyspace generates some violations of this rule during the link phase.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its

definition.
• Global declaration of variable_name variable has incompatible type with its

definition.
• All declarations of an object or function shall use the same names and type qualifiers.

Check Information
Group: Declarations and Definitions

6 MISRA C 2012

6-72

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.4

6-73

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition

A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale

If a declaration for an object or function is visible when the object or function is defined,
a compiler must check that the declaration and definition are compatible. In the presence
of function prototypes, as required by rule 8.2, checking extends to the number and
type of function parameters. A better way of implementing declarations of objects and
functions with external linkage is to declare them in a header file. Then include the
header file in all those code files that require them, including the one that defines them.

Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 | MISRA
C:2012 Rule 17.3

6 MISRA C 2012

6-74

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.5

6-75

MISRA C:2012 Rule 8.5

An external object or function shall be declared once in one and only one file

Description

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

Typically, a single declaration is made in a header file that you include any in translation
unit in which the identifier is defined or used. This inclusion ensures consistency
between:

• The declaration and the definition
• The declarations in different translation units

Note: It is possible to have many header files in a project, but each external object or
function is declared in only one header file.

Polyspace Specification

Polyspace checks only explicit extern declarations (tentative definitions are ignored).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Object object_name has external declarations in multiples files.
• Function function_name has external declarations in multiples files.

6 MISRA C 2012

6-76

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.6

6-77

MISRA C:2012 Rule 8.6

An identifier with external linkage shall have exactly one external definition

Description

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

The behavior is undefined if you use an identifier for which multiple definitions exist
(in different files) or no definition exists. Multiple definitions in different files are
not permitted by this rule even if the definitions are the same. If the declarations are
different, or initialize the identifier to different values, it is undefined behavior.

Polyspace Specification

Polyspace considers tentative definitions as definitions, but does not raise warnings on
predefined symbols.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative of definition for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative of definitions.
• Undefined global variable variable_name.

6 MISRA C 2012

6-78

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.7

6-79

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in
only one translation unit.

Rationale

Restricting or reducing the visibility of an object by giving it internal linkage or no
linkage reduces the chance that it is accessed inadvertently. Compliance with this rule
also avoids any possibility of confusion between your identifier and an identical identifier
in another translation unit or a library.

Polyspace Specification

If your program does not use the externally defined function or object, Polyspace does not
raise a warning.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

Check Information
Group: Declarations and Definitions
Category: Advisory

6 MISRA C 2012

6-80

AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.8

6-81

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale

If you have an object or function declared with extern, and another declaration of the
object or function is already visible, the linkage can be confusing. You expect that the
extern storage class specifier creates external linkage. Apply the static storage class
specifier to objects and functions with internal linking.

Message in Report

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Examples

Internal and External Linkage Conflicts

static int foo = 0;

extern int foo; /* Non-compliant */

extern int hhh;

static int hhh; /* Non-compliant */

In this example, the first line defines x with internal linkage. Because the example
uses the static keyword, the first line is compliant. However, the second line does not

6 MISRA C 2012

6-82

use static in the declaration, so the declaration is noncompliant. By comparison, the
third line declares y with an extern keyword creating external linkage. The fourth line
declares y with internal linkage, but this declaration conflicts with the first declaration
of y.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;

static int foo;

extern int hhh;

extern int hhh;

Internal linkage

static int fee(void); /* Compliant - declaration: internal linkage */

int fee(void){ /* Non-compliant */

 return 1;

}

static int ggg(void); /* Compliant - declaration: internal linkage */

extern int ggg(void){ /* Non-compliant */

 return 1 + x;

}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 8.8

6-83

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-84

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition

An object should be defined at block scope if its identifier only appears in a single
function.

Rationale

Defining an object at block scope reduces the possibility that you inadvertently access the
object . It ensures your program does not access the object elsewhere.

Polyspace Specification

Polyspace raises a warning only for static objects.

Message in Report

An object should be defined at block scope if its identifier only appears in a single
function.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 8.9

6-85

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-86

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function with external linkage, you can call the external definition
of the function or the inline definition. This behavior can affect the execution time and
therefore impact your program.

Tip To make an inline function available to several translation units, place its definition
in a header file.

Message in Report

An inline function shall be declared with the static storage class.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 8.10

6-87

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-88

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with incomplete type and access its elements,
it is safer to state the size of the array explicitly. Providing size information for each
declaration allows the software to check the declarations for consistency. It also allows a
static checker to perform array bounds analysis without analyzing more than one unit.

Message in Report

Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Examples

Array Declarations

extern int32_t array1[10]; /* Compliant */

extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but
no specified size. array2 is noncompliant because for arrays with external linkage, you
must explicitly specify a size.

Check Information
Group: Declarations and Definitions

 MISRA C:2012 Rule 8.11

6-89

Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-90

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Description

Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale

An implicitly specified enumeration constant has a value 1 greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the value of the associate constant expression.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Message in Report

The constant constant1 has same value as the constant constant2.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 8.12

6-91

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-92

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description

Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Specification

Polyspace issues a warning if a non-const pointer parameter either:

• Does not modify the addressed object.
• Is passed to a call of a function that is declared with a const pointer parameter.

Message in Report

A pointer should point to a const-qualified type whenever possible.

Examples

Pointer Parameters

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */

 return *p;

 MISRA C:2012 Rule 8.13

6-93

}

char last_char(char * const s){ /* Non-compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(uint16_t a[5]){ /* Non-compliant */

 return a[0];

}

This example shows three different noncompliant pointer parameters. In the ptr_ex
function, p does not modify an object. However, the type to which p points is not const-
qualified, so it is noncompliant. In last_char, the pointer s is const-qualified but
the type it points to is not. Because s does not modify an object, this parameter is
noncompliant. The function first does not modify the elements of the array a. However,
the element type is not const-qualified, so a is also noncompliant.

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */

 return *p;

}

char last_char(const char * const s){ /* Compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(const uint16_t a[5]) { /* Compliant */

 return a[0];

}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

6 MISRA C 2012

6-94

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.14

6-95

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, make sure that the memory areas operated on by two or more pointers do not
overlap.

Message in Report

The restrict type qualifier shall not be used.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-96

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description

Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been
set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of
an enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Specification

The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

The value of an object with automatic storage duration shall not be read before it has
been set.

 MISRA C:2012 Rule 9.1

6-97

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-98

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a
structure that contains an array, the values assigned to the structure must be enclosed in
braces. Within these braces, the values assigned to the array must be enclosed in another
pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report

The initializer for an aggregate or union shall be enclosed in braces.

Examples

Initialization of Two-dimensional Arrays

void initialize(void) {

 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */

 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */

 MISRA C:2012 Rule 9.2

6-99

 int z[4][2] = {0}; /* Compliant */

 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */

}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-100

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report

Arrays shall not be partially initialized.

Examples

Partial and Complete Initializations

void func(void) {

 int x[3] = {0,1,2}; /* Compliant */

 int y[3] = {0,1}; /* Non-compliant */

 int z[3] = {0}; /* Compliant - exception */

 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */

 int b[30] = {{1} = 1, 1}; /* Non-compliant */

 char c[20] = "Hello World"; /* Compliant - exception */

}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized.
Exceptions include the following:

 MISRA C:2012 Rule 9.3

6-101

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-102

MISRA C:2012 Rule 9.4

An element of an object shall not be initialized more than once

Description

Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of an objects such as arrays
in any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report

An element of an object shall not be initialized more than once.

Examples

Array Initialization Using Designated Initializers

void func(void) {

 int a[5] = {-2,-1,0,1,2}; /* Compliant */

 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};

 /* Compliant */

 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};

 /* Non-compliant */

}

In this example, the rule is violated when the array element c[1] is initialized twice
using a designated initializer.

 MISRA C:2012 Rule 9.4

6-103

Structure Initialization Using Designated Initializers

struct myStruct {

 int a;

 int b;

 int c;

 int d;

};

void func(void) {

 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */

 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};

 /* Compliant */

 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};

 /* Non-compliant */

}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-104

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Examples

Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */

int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */

int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {

 func(a,5);

 func(b,5);

 MISRA C:2012 Rule 9.5

6-105

 func(c,5);

}

void func(int* arr, int size) {

 for(int i=0; i<size; i++)

 display(arr[i]);

}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-106

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description

Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale

What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types

Essentially Boolean _Bool

Essentially character char

Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type
column is not empty for that row, there is a MISRA restriction when using that type as
the operand. The number in the table corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand

Operator Operand Boolean character enum signed unsigned floating
[] integer 3 4 1

 MISRA C:2012 Rule 10.1

6-107

Operation Essential type category of arithmetic operand

+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2
?: 2nd and 3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand

of essentially character type. The numeric values of character data are
implementation-defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

6 MISRA C 2012

6-108

Message in Report

The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.2

6-109

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations

Description

Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale

Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

Message in Report

• The operand_name operand of the + operator applied to an expression of essentially
character type shall have essentially signed or unsigned type.

• The right operand of the - operator applied to an expression of essentially character
type shall have essentially signed or unsigned or character type.

• The left operand of the - operator shall have essentially character type if the right
operand has essentially character type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.1

6 MISRA C 2012

6-110

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.3

6-111

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Message in Report

• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule 10.6

More About
• “Activate Coding Rules Checker”

6 MISRA C 2012

6-112

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.4

6-113

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Message in Report

Operands of operator_name operator shall have the same essential type category.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

6 MISRA C 2012

6-114

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.5

6-115

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition

The value of an expression should not be cast to an inappropriate essential type.

Rationale

Converting Between Variable Types

From
Boolean character enum signed unsigned floating

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid

To

floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is
not necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

Some acceptable explicit casts are:

6 MISRA C 2012

6-116

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

Message in Report

The value of an expression should not be cast to an inappropriate essential type.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.6

6-117

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential
type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

Message in Report

The composite expression is assigned to an object with a wider essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

6 MISRA C 2012

6-118

Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.7

6-119

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

Message in Report

• The right operand shall not have wider essential type than the left operand which is a
composite expression.

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

6 MISRA C 2012

6-120

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.8

6-121

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition

The value of a composite expression shall not be cast to a different essential type category
or a wider essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

Message in Report

• The value of a composite expression shall not be cast to a different essential type
category.

6 MISRA C 2012

6-122

• The value of a composite expression shall not be cast to a wider essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.5

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 11.1

6-123

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function
pointers have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Specification

Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report

Conversions shall not be performed between a pointer to a function and any other type.

Examples

Cast between two function pointers

typedef void (*fp16) (short n);

6 MISRA C 2012

6-124

typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer

 * constant into a pointer to a function */

 fp16 fp1 = NULL; /* Compliant - exception */

 fp16 fp2 = (fp16) fp1; /* Compliant */

 fp32 fp3 = (fp32) fp1; /* Non-compliant */

 if (fp2 != NULL) {} /* Compliant - exception */

 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to

 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.2

6-125

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other
type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Examples

Casts from incomplete type

struct s *sp;

struct t *tp;

short *ip;

6 MISRA C 2012

6-126

struct ct *ctp1;

struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */

 sp = (struct s *) 1234; /* Non-compliant */

 tp = (struct t *) sp; /* Non-compliant */

 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to

 * a pointer to an incomplete type */

 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */

 struct s *f(void);

 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.5

 MISRA C:2012 Rule 11.2

6-127

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-128

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description

Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Message in Report

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule 11.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 11.3

6-129

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-130

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed between a pointer to object and an integer type.

Examples

Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;

 MISRA C:2012 Rule 11.4

6-131

typedef char char_t;

typedef unsigned short uint16_t;

typedef signed int int32_t;

typedef _Bool bool_t;

uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;

 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;

 uint16_t *pui16 = &ui16; /* Compliant */

 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;

 int32_t addr = (int32_t) p; /* Non-compliant */

 bool_t b = (bool_t) p; /* Non-compliant */

 enum etag { A, B } e = (enum etag) p; /* Non-compliant */

}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address
to a pointer in a header file. To avoid the assignment being flagged, you can then
exclude headers files from coding rules checking. For more information, see “Files and
folders to ignore (C)” or “Files and folders to ignore (C++)”.

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

6 MISRA C 2012

6-132

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule 11.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.5

6-133

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description

Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed from pointer to void into pointer to object.

Examples

Cast from Pointer to void

void foo(void) {

 unsigned int u32a = 0;

 unsigned int *p32 = &u32a;

 void *p;

 unsigned int *p16;

6 MISRA C 2012

6-134

 p = p32; /* Compliant - pointer to uint32_t

 * into pointer to void */

 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */

 p32 = (unsigned int *) p; /* Non-compliant */

}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.6

6-135

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the
allowed range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A cast shall not be performed between pointer to void and an arithmetic type.

Examples

Casts Between Pointer to void and Arithmetic Types

void foo(void) {

6 MISRA C 2012

6-136

 void *p;

 unsigned int u;

 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */

 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.7

6-137

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined
behavior. If a pointer is cast to one of those types, the resulting value can be outside
the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Examples

Casts from Pointer to Non-Integer Arithmetic Types

int foo(void) {

 short *p;

 float f;

 long *l;

 f = (float) p; /* Non-compliant */

6 MISRA C 2012

6-138

 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */

}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.8

6-139

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Specification

Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Check Information
Group: Pointer Type Conversions

6 MISRA C 2012

6-140

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.9

6-141

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description

Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report

The macro NULL shall be the only permitted form of integer null pointer constant.

Examples

Using 0 for Pointer Assignments and Comparisons

void main(void) {

 int *p1 = 0; /* Non-compliant */

 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0

#define MY_NULL_2 (void *) 0

6 MISRA C 2012

6-142

 if (p1 == MY_NULL_1) /* Non-compliant */

 { }

 if (p2 == MY_NULL_2) /* Compliant */

 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0
for pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 12.1

6-143

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Precedence

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7
Bitwise XOR ^ 6
Bitwise OR | 5

6 MISRA C 2012

6-144

Description Operator and Operand Precedence

Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Examples

Ambiguous Precedence in Multi-Operation Expressions

int a, b, c, d, x;

void foo(void) {

 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */

}

This example shows various violations of MISRA rule 12.1. In each violation, if you do
not know the order of operations, the code could execute unexpectedly.

Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

 MISRA C:2012 Rule 12.1

6-145

int a, b, c, d, x;

void foo(void) {

 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }

}

Ambiguous Precedence In Preprocessing Expressions

if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */

endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */

endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code.
In each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

if defined (X) && ((X + Y) > Z)

endif

if ! defined (X) && defined (Y)

endif

Compliant Expressions Without Parentheses

int a, b, c, x;

struct {int a; } s, *ps, *pp[2];

void foo(void) {

6 MISRA C 2012

6-146

 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */

 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have

 * the same precedence */

}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule 12.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

6-147

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale

Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than
16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Specification

In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report

• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

Check Information
Group: Expressions

6 MISRA C 2012

6-148

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.3

6-149

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition

The comma operator should not be used.

Rationale

Use of the comma operator is generally detrimental to the readability of code. The same
code can usually be written in another form.

Message in Report

The comma operator should not be used.

Examples

Comma Usage in C Code

typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant */

int foo(void)

{

 volatile int rd = 1; /* Compliant */

 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant */

 int abc = 0, xyz = abc + 1; /* Compliant */

 int jkl = (abc + xyz, abc + xyz); /* Not compliant */

 var = 1, foo += var, kkk = 3; /* Not compliant */

6 MISRA C 2012

6-150

 var = (kkk = 1, foo = 2); /* Not compliant */

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}

 /* Not compliant */

 if ((abc,xyz)<0) { return 1; } /* Not compliant */

}

In this example, the code shows various uses of commas in C code. Using commas to call
functions with variables is allowed (line 3). When using the comma for initialization, the
variables and values must be clear (line 8 and 10). Line 11 is not compliant because it
is unclear what jkl is initialized to. (For example, abc+xyz, (abc+xyz)*(abc+xyz),
f((abc+xyz),(abc+xyz)), etc.)

Line 13 and 14 are both assignment statements, but it is unclear which variables are
getting assigned which values.

Line 16 violates multiple MISRA coding rules because the complex for statement makes
it unclear which values control the loop.

Line 18 violates rule 12.3 because it is unclear if the if statement depends on abc, xyz,
or both.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.4

6-151

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description

Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

6 MISRA C 2012

6-152

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 13.1

6-153

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report

Initializer lists shall not contain persistent side effects.

Examples

Initializers with Persistent Side Effect

volatile int v;

int x;

int y;

void f(void) {

 int arr[2] = {x+y,x-y}; /* Compliant */

 int arr2[2] = {v,0}; /* Non-compliant */

 int arr3[2] = {x++,y}; /* Non-compliant */

}

6 MISRA C 2012

6-154

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

6-155

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Polyspace Specification

Rule 13.2 assumes that the comma operator is not used (rule 12.3).

Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends
on the order of evaluation because of multiple accesses.

Examples

Variable Modified More Than Once in Expression

int a[10], b[10];

6 MISRA C 2012

6-156

#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {

 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */

 COPY_ELEMENT (i++); /* Non-compliant */

}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {

 unsigned int i=0;

 f (i++, i); /* Non-compliant */

}

In this example, the rule is violated because it is unspecified whether the operation i
++ occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 |
MISRA C:2012 Rule 13.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 13.2

6-157

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-158

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report

A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator.

Examples

Increment Operator Used in Expression with Other Side Effects

int input(void);

 MISRA C:2012 Rule 13.3

6-159

int choice(void);

int operation(int, int);

int func() {

 int x = input(), y = input(), res;

 int ch = choice();

 if (choice == -1)

 return(x++);

 if (choice == 0) {

 res = x++ + y++;

 return(res); /* Non-compliant */

 }

 else if (choice == 1) {

 x++; /* Compliant */

 y++; /* Compliant */

 return (x+y);

 }

 else {

 res = operation(x++,y);

 return(res); /* Non-compliant */

 }

}

In this example, the rule is violated when the expressions containing the ++ operator
have side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

6 MISRA C 2012

6-160

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

6-161

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description

Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the
result of the assignment x=y.

Message in Report

The result of an assignment operator should not be used.

Examples

Result of Assignment Used

int x, y, b, c, d;

int a[10];

unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

6 MISRA C 2012

6-162

 if (bool_var = false) {}

 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}

 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}

 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];

 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.5

6-163

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or ||operator shall not contain persistent side
effects

Description

Rule Definition

The right hand operand of a logical && or ||operator shall not contain persistent side
effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Specification

• For this rule, Polyspace considers that all function calls have a persistent side effect.
• If the right operand is a volatile variable, Polyspace does not flag this as a rule

violation.

Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

Examples

Right Operand of Logical Operator with Persistent Side Effects

int check (int arg) {

6 MISRA C 2012

6-164

 static int count;

 if(arg > 0) {

 count++; /* Persistent side effect */

 return 1;

 }

 else

 return 0;

}

int getSwitch(void);

int getVal(void);

void main(void) {

 int val = getVal();

 int mySwitch = getSwitch();

 if(mySwitch && check(val)) { /* Non-compliant */

 }

}

In this example, the rule is violated because the right operand of the && operation is a
function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or
|| operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add
a comment and justification in your Polyspace result explaining why you retained your
code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 13.5

6-165

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-166

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Specification

The rule is not violated if the argument is a volatile variable.

Message in Report

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Examples

Expressions in sizeof Operator

#include <stddef.h>

int x;

int y[40];

struct S {

 int a;

 MISRA C:2012 Rule 13.6

6-167

 int b;

};

struct S myStruct;

void main() {

 size_t sizeOfType;

 sizeOfType = sizeof(x); /* Compliant */

 sizeOfType = sizeof(y); /* Compliant */

 sizeOfType = sizeof(myStruct); /* Compliant */

 sizeOfType = sizeof(x++); /* Non-compliant */

}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.8

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-168

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in
a mismatch between the expected and actual number of iterations. This rounding error
can happen when a loop step that is not a power of the floating point radix is rounded to
a value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Specification

If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report

A loop counter shall not have essentially floating type.

Examples

for Loop Counters

int main(void){

 unsigned int counter = 0u;

 int result = 0;

 MISRA C:2012 Rule 14.1

6-169

 float foo;

 // Float loop counters

 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){

 /* Non-compliant - counter = 1000 at the end of the loop */

 ++counter;

 }

 float fff = 0.0f;

 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/

 result++;

 }

 // Integer loop count

 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */

 foo = (float) count * 0.001f;

 }

}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used
as a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters

int main(void){

 unsigned int u32a;

 float foo;

 foo = 0.0f;

 while (foo < 1.0f){

 foo += 0.001f; /* Non-compliant - foo used as a loop counter */

 }

 foo = read_float32();

 do{

 u32a = read_u32();

 }while(((float)u32a - foo) > 10.0f);

 /* Compliant - foo doesn't change in the loop */

 /* so cannot be a counter */

 return 1;

6 MISRA C 2012

6-170

}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.2

6-171

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition

A for loop shall be well-formed.

Rationale

The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Specification

Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report

• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;
• all three expressions shall be empty for a deliberate infinite loop.

• 3rd expression should be an assignment of a loop counter.

6 MISRA C 2012

6-172

• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Examples

Altering the Loop Counter Inside the Loop

void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */

 index = index + 3; /* Altering the loop counter */

 }

}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0

#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */

 if((index % 4) == 0){

 flag = TRUE; /* allows early termination of loop */

 }

 }

 MISRA C:2012 Rule 14.2

6-173

}

for Loops With Empty Clauses

void foo(void)

 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;

 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}

 /* Compliant - Exception all three clauses can be empty */

}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 14.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

6 MISRA C 2012

6-174

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.3

6-175

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code
and Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations.

Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

Check Information
Group: Control Statement Expressions

6 MISRA C 2012

6-176

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.4

6-177

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale

Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Specification

Polyspace does not flag integer constants, for example if(2).

If your configuration includes the option -boolean-types, the number of warnings can
increase or decrease.

Message in Report

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Examples

Controlling Expression in if, while, and for

#include <stdbool.h>

#include <stdlib.h>

6 MISRA C 2012

6-178

#define TRUE = 1

typedef _Bool bool_t;

extern bool_t flag;

void foo(void){

 int *p = 1;

 int *q = 0;

 int i = 0;

 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */

}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single
non-Boolean variable. If you use a single variable as the controlling statement, it must
be essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8

 MISRA C:2012 Rule 14.4

6-179

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-180

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition

The goto statement should not be used.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report

The goto statement should not be used.

Examples

Use of goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Non-compliant */

 }

label2: {

 result++;

 goto label1; /* Non-compliant */

 }

}

 MISRA C:2012 Rule 15.1

6-181

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-182

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult
to understand. You can use a forward goto statement together with a backward one
to implement iterations. Restricting backward goto statements ensures that you use
only iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report

The goto statement shall jump to a label declared later in the same function.

Examples

Use of Backward goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Compliant */

 }

label2: {

 result++;

 MISRA C:2012 Rule 15.2

6-183

 goto label1; /* Non-compliant */

 }

}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-184

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Examples

goto Statements Jump Inside Block

void f1(int a) {

 if(a <= 0) {

 goto L2; /* Non-compliant - L2 in different block*/

 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {

 MISRA C:2012 Rule 15.3

6-185

 goto L1; /* Compliant - L1 in outer block*/

 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {

 L2:;

 }

}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block

void f2 (int x, int z) {

 int y = 0;

 switch(x) {

 case 0:

 if(x == y) {

 goto L1; /* Non-compliant - switch-clauses are treated as blocks */

 }

 break;

 case 1:

 y = x;

 L1: ++x;

 break;

 default:

 break;

 }

}

6 MISRA C 2012

6-186

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.4 |
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.4

6-187

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition

There should be no more than one break or goto statement used to terminate any iteration
statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit
point from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report

There should be no more than one break or goto statement used to terminate any
iteration statement.

Examples

break Statements in Inner and Outer Loops

volatile int stop;

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

 for (i=0; i< size; i++) { /* Compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

6 MISRA C 2012

6-188

 if(stop)

 break;

 sum += arr[j];

 }

 }

}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop

volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {

 int i;

 int sum = 0;

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 if(stop)

 goto L1;

 sum += arr[i];

 }

 L1: displayStopMessage();

}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

goto Statement in Inner Loop and break Statement in Outer Loop

volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

 MISRA C:2012 Rule 15.4

6-189

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

 if(stop)

 goto L1;

 sum += arr[i];

 }

 }

 L1: displayMessage();

}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-190

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report

A function should have a single point of exit at the end.

Examples

More Than One return Statement in Function

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */

 if(n > MAX) {

 MISRA C:2012 Rule 15.5

6-191

 return false;

 }

 if(p == NULL) {

 return false;

 }

 return true;

}

In this example, the rule is violated because there are three return statements.

Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */

 return_value = true;

 if(n > MAX) {

 return_value = false;

 }

 if(p == NULL) {

 return_value = false;

 }

 return return_value;

}

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

6 MISRA C 2012

6-192

Language: C90, C99

See Also
MISRA C:2012 Rule 17.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

6-193

MISRA C:2012 Rule 15.6
The body of an iteration- statement or a selection- statement shall be a compound-
statement

Description

Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report

• The else keyword shall be followed by either a compound statement, or another if
statement.

• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.
• The statement forming the body of a do ... while statement shall be a compound

statement.

6 MISRA C 2012

6-194

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound

statement.

Examples

Iteration Block

int data_available = 1;

void f1(void) {

 while(data_available) /* Non-compliant */

 process_data();

 while(data_available) { /* Compliant */

 process_data();

 }

}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements

void f1(void) {

 if(flag_1) /* Non-compliant */

 if(flag_2) /* Non-compliant */

 action_1();

 else /* Non-compliant */

 action_2();

}

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {

 MISRA C:2012 Rule 15.6

6-195

 if(flag_1) { /* Compliant */

 if(flag_2) { /* Compliant */

 action_1();

 }

 }

 else { /* Compliant */

 action_2();

 }

}

Spurious Semicolon After Iteration Statement

void f1(void) {

 while(flag_1); /* Non-compliant */

 {

 flag_1 = action_1();

 }

}

In this example, the rule is violated even though the while statement is followed by
a block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-196

MISRA C:2012 Rule 15.7

All if … else if constructs shall be terminated with an else statement

Description

Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report

All if … else if constructs shall be terminated with an else statement.

Examples

Missing else Block

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

 MISRA C:2012 Rule 15.7

6-197

 /* Non-compliant */

 action_2();

 }

}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

 /* Non-compliant */

 action_2();

 }

 else {

 /* No statement required */

 /* ; is optional */

 }

}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 16.5

6 MISRA C 2012

6-198

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 16.1

6-199

MISRA C:2012 Rule 16.1

All switch statements shall be well-formed

Description

Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

6 MISRA C 2012

6-200

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule 16.3 |
MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012 Rule 16.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.2

6-201

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required

6 MISRA C 2012

6-202

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.3

6-203

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls”
into the next statement. This next statement can be another switch-clause, or the end of
the switch. This behavior is sometimes intentional, but more often it is an error. If you
add additional cases later, an unterminated switch-clause can cause problems.

Polyspace Specification

Polyspace raises a warning for each noncompliant case clause.

Message in Report

An unconditional break statement shall terminate every switch-clause.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

6 MISRA C 2012

6-204

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.4

6-205

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report

Every switch statement shall have a default label.

Examples

Switch Statement Without default

short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 }

 return xyz;

}

6 MISRA C 2012

6-206

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 default:

 errorflag = 1;

 break;

 }

 if (errorflag == 1)

 return errorflag;

 else

 return xyz;

}

Switch Statement for Enumerated Inputs

enum Colors{

 RED, GREEN, BLUE

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

 MISRA C:2012 Rule 16.4

6-207

 next = RED;

 break;

 }

 return next;

}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{

 RED, GREEN, BLUE, ERROR

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Compliant */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

 next = RED;

 break;

 default:

 next = ERROR;

 break;

 }

 return next;

}

Check Information
Group: Switch Statements

6 MISRA C 2012

6-208

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.5

6-209

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition

A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Message in Report

A default label shall appear as either the first or the last switch label of a switch
statement.

Examples

Default Case in switch Statements

void foo(int var){

 switch(var){

 default: /* Compliant - default is the first label */

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 }

6 MISRA C 2012

6-210

 switch(var){

 case 0:

 ++var;

 break;

 default: /* Non-compliant - default is mixed with the case labels */

 case 1:

 case 2:

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 default: /* Compliant - default is the last label */

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 default: /* Compliant - default is the last label */

 var = 0;

 break;

 }

}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be
the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements
Category: Required

 MISRA C:2012 Rule 16.5

6-211

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-212

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming
error.

Message in Report

Every switch statement shall have at least two switch-clauses.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.7

6-213

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Specification

If your configuration uses the -boolean-types option, the number of reported
violations can increase.

Message in Report

A switch-expression shall not have essentially Boolean type.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

6 MISRA C 2012

6-214

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 17.1

6-215

MISRA C:2012 Rule 17.1
The features of <starg.h> shall not be used

Description

Rule Definition

The features of <stdarg.h> shall not be used..

Rationale

The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard.
For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report

The features of <stdarg.h> shall not be used.

Examples

Use of va_start, va_list, va_arg, and va_end

#include<stdarg.h>

void f2(int n, ...) {

6 MISRA C 2012

6-216

 int i;

 double val;

 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)

 {

 val = va_arg(vl, double); /* Non-compliant */

 }

 va_end(vl); /* Non-compliant */

}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>

void h(va_list ap) { /* Non-compliant */

 double y;

 y = va_arg(ap, double); /* Non-compliant */

}

void g(unsigned short n, ...) {

 unsigned int x;

 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */

 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */

 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {

 /* undefined - uint32_t:double type mismatch when g uses va_arg () */

 g(1, 2.0, 3.0);

 MISRA C:2012 Rule 17.1

6-217

}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-218

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself
directly or indirectly several times, the available stack space can be exceeded, causing
serious failure. Unless the recursion is tightly controlled, it is difficult to determine the
maximum stack space required.

Message in Report

Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Examples

Direct and Indirect Recursion

void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */

 foo2();

 foo1(); /* Non-compliant - Direct recursion */

}

void foo2(void) {

 foo1();

}

In this example, the rule is violated because of:

 MISRA C:2012 Rule 17.2

6-219

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-220

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining
it. When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Message in Report

Function 'XX' has no complete visible prototype at call.

Examples

Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);

int getChoice(void);

double func() {

 double res;

 int ch = getChoice();

 if(ch == 0) {

 MISRA C:2012 Rule 17.3

6-221

 res = power(2.0, 10); /* Non-compliant */

 }

 else if(ch==1) {

 res = power2(2.0, 10); /* Non-compliant */

 }

 else {

 res = power3(2.0, 10); /* Compliant */

 return res;

 }

}

double power2 (double val, int exponent) {

 return (pow(val, exponent));

}

In this examples, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

6 MISRA C 2012

6-222

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.4

6-223

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description

Rule Definition

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report

Missing return value for non-void function 'XX'.

Examples

Missing Return Statement Along Certain Execution Paths

int absolute(int v) {

 if(v < 0) {

 return v;

 }

}

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

6 MISRA C 2012

6-224

Return Statement Without Explicit Expression

#define SIZE 10

int table[SIZE];

unsigned short lookup(unsigned short v) {

 if((v < 0) || (v > SIZE)) {

 return;

 }

 return table[v];

}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.6

6-225

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the
[]

Description

Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you
can inform a C99 compiler that the array contains a minimum number of elements.
The compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report

The declaration of an array parameter shall not contain the static keyword between the
[].

Examples

Use of static Keyword Within [] in Array Parameter

extern int arr1[20];

extern int arr2[10];

/* Non-compliant: static keyword used in array declarator */

unsigned int total (unsigned int n, unsigned int arr[static 20]) {

 unsigned int i;

 unsigned int sum = 0;

6 MISRA C 2012

6-226

 for (i=0U; i < n; i++) {

 sum+= arr[i];

 }

 return sum;

}

void func (void) {

 int res, res2;

 res = total (10U, arr1); /* Non-compliant - behavior not defined */

 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */

}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.7

6-227

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the
return value. Because the compiler allows the call, you might not catch the omission.
This rule forbids calls to a non-void function where the return value is not used. If you
do not intend to use the return value of a function, explicitly cast the return value to
void.

Message in Report

The value returned by a function having non-void return type shall be used.

Examples

Used and Unused Return Values

unsigned int cutOff(unsigned int val) {

 if (val > 10 && val < 100) {

 return val;

 }

 else {

 return 0;

 }

}

unsigned int getVal(void);

6 MISRA C 2012

6-228

void func2(void) {

 unsigned int val = getVal(), res;

 cutOff(val); /* Non-compliant */

 res = cutOff(val); /* Compliant */

 (void)cutOff(val); /* Compliant */

}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 18.1

6-229

MISRA C:2012 Rule 18.1

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-
time derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Specification

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index

Message in Report

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

6 MISRA C 2012

6-230

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.2

6-231

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the
same array.

Rationale

This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. If pointer_expression1 and pointer_expression2 do
not point to elements of the same array or the element beyond the end of that array, it is
undefined behavior.

Message in Report

Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Activate Coding Rules Checker”

6 MISRA C 2012

6-232

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.3

6-233

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior .

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Examples

Pointer and Array Comparisons

void f1(void){

 int arr1[10];

 int arr2[10];

 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */

 if(ptr1 < arr1){} /* Compliant */

6 MISRA C 2012

6-234

}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons

struct limits{

 int lower_bound;

 int upper_bound;

};

void func2(void){

 struct limits lim_1 = { 2, 5 };

 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *

 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */

}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure
elements within a structure. The first comparison compares the lower_bound of
lim1 and the upper_bound of lim2. This comparison is noncompliant because
the lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 18.3

6-235

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-236

MISRA C:2012 Rule 18.4

The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for
instance, sequentially accessing locations during a memory test).

Polyspace Specification

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report

The +, -, += and -= operators should not be applied to an expression of pointer type.

 MISRA C:2012 Rule 18.4

6-237

Examples

Pointers and Array Expressions

void fun1(void){

 unsigned char arr[10];

 unsigned char *ptr;

 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */

 ptr = &arr[5]; /* Compliant */

 ptr = arr;

 ptr++; /* Compliant - increment operator not + */

 (ptr + 5) = 0U; / Non-compliant */

 ptr[5] = 0U; /* Compliant */

}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line
12).

Adding Array Elements Inside a for Loop

void fun2(void){

 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};

 unsigned char i = 0U;

 unsigned char j = 0U;

 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){

 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){

 sum += row[j]; /* Compliant */

 }

 }

}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

6 MISRA C 2012

6-238

Pointers and Array Expressions

void fun3(unsigned char *ptr1, unsigned char ptr2[]){

 ptr1++; /* Compliant */

 ptr1 = ptr1 - 5; /* Non-compliant */

 ptr1 -= 5; /* Non-compliant */

 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */

 ptr2 = ptr2 + 3; /* Non-compliant */

 ptr2 += 3; /* Non-compliant */

 ptr2[3] = 0U; /* Compliant */

}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.5

6-239

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report

Declarations should contain no more than two levels of pointer nesting.

Examples

Pointer Nesting

typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */

{

 char ** obj2; /* Compliant */

 char *** obj3; /* Non-compliant */

 INTPTR * obj4; /* Compliant */

 INTPTR * const * const obj5; /* Non-compliant */

 char ** arr[10]; /* Compliant */

 char ** (*parr)[10]; /* Compliant */

 char * (**pparr)[10]; /* Compliant */

}

6 MISRA C 2012

6-240

struct s{

 char * s1; /* Compliant */

 char ** s2; /* Compliant */

 char *** s3; /* Non-compliant */

};

struct s * ps1; /* Compliant */

struct s ** ps2; /* Compliant */

struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */

char ** (**pfunc2)(void); /* Compliant */

char ** (***pfunc3)(void); /* Non-compliant */

char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.6

6-241

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Specification

Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Examples

Address of Local Variables

char *func(void){

 char local_auto;

 return &local_auto /* Non-compliant

6 MISRA C 2012

6-242

 * &local_auto is indeterminate */

}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables

char *sp;

void f(unsigned short u){

 g(&u);

}

void g(unsigned short *p){

 sp = p; /* Non-compliant

 * the parameter u from f is copied to static sp */

}

void h(void){

 static unsigned short *q;

 unsigned short x =0u;

 q = &x; /* Non-compliant -

 * &x stored in object with greater lifetime */

}

In this example, the function g stores a copy of its pointer parameter p. If p always
points to an object with static storage duration, then the code is compliant with this rule.
However, in this example , p points to an object with automatic storage duration. In such
a case, copying the parameter p is noncompliant.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 18.6

6-243

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-244

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3.

Message in Report

Flexible array members shall not be declared.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.8

6-245

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays
can make it impossible to determine statistically the amount of memory for the stack
requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of
the array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report

Variable-length array types shall not be used.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C99

6 MISRA C 2012

6-246

See Also
MISRA C:2012 Rule 13.6

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 19.1

6-247

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description

Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report

• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Examples

Assignment of Unions

void func (void) {

 union {

 short i;

 int j;

 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */

6 MISRA C 2012

6-248

 a = b; /* Compliant */

}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments

#include <string.h>

int arr[10];

void func(void) {

 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */

 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */

 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */

}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken
up by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 19.1

6-249

Introduced in R2014b

6 MISRA C 2012

6-250

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is
unspecified.

• Otherwise, the value is implementation-dependant.

Message in Report

The union keyword should not be used.

Examples

Possible Problems with union Keyword

unsigned int zext(unsigned int s)

{

 union /* Non-compliant */

 {

 unsigned int ul;

 unsigned short us;

 } tmp;

 MISRA C:2012 Rule 19.2

6-251

 tmp.us = s;

 return tmp.ul; /* Unspecified value */

}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int
field tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-252

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the
file. Undefined behavior can occur if you use #include to include a standard header
file within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Specification

Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report

#include directives should only be preceded by preprocessor directives or comments.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 20.1

6-253

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-254

MISRA C:2012 Rule 20.2
The', "or \characters and the /* or //character sequences shall not occur in a header file
name

Description

Rule Definition

The', "or \characters and the /* or //character sequences shall not occur in a header file
name.

Rationale

The program’s behavior is undefined if:

• You use ' " \ /* // are used between < > delimiters in a header name
preprocessing token.

• You use ' \ /* // are used between " delimiters in a header name preprocessing
token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Specification

Polyspace flags the characters ' \ " /* between < and > in #include <filename>.

Polyspace flags the characters ' \ /* between " and " in #include <filename>.

Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

Check Information
Group: Preprocessing Directives

 MISRA C:2012 Rule 20.2

6-255

Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-256

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition

The #include directive shall be followed by either a <filename> or \"filename\" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive doe snot use one of the following
forms:

• #include <filename>

• #include "filename"

Message in Report

• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 20.3

6-257

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-258

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition

A macro shall not be defined with the same name as a keyword.

Rationale

Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Examples

Redefining int keyword

#define int some_other_type

 /* Non-compliant - int keyword behavior altered */

#include <stdlib.h>

...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

Correction — Rename keyword

One possible correction is to use a different keyword:

 MISRA C:2012 Rule 20.4

6-259

#define int_mine some_other_type

#include <stdlib.h>

...

Redefining keywords versus statements

#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/

#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/

#define compound(S) {S;} /* Compliant*/

...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards

#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline
is not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 21.1

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-260

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report

#undef shall not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.6

6-261

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description

Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Specification

Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report

Macro argument shall not look like a preprocessing directive.

Examples

Macro Expansion Causing Compliance

#define M(A) printf (#A)

#include <stdio.h>

void foo(void){

 M(

#ifdef SW /* Non-compliant */

6 MISRA C 2012

6-262

 "Message 1"

#else

 "Message 2" /* Compliant - SW not defined */

#endif /* Non-compliant */

);

}

This example shows a macro definition and the macro usage. #ifdef SW and #endif
are noncompliant because they look like a preprocessing directive. Polyspace does not
flag #else "Message 2" because after macro expansion, Polyspace knows SW is not
defined. The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.7

6-263

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description

Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale

If you do not use parentheses , then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Examples

Macro Expressions

#define mac1(x, y) (x * y)

#define mac2(x, y) ((x) * (y))

void foo(void){

 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */

 r = mac1((1 + 2), (3 + 4)); /* Compliant */

6 MISRA C 2012

6-264

 r = mac2(1 + 2, 3 + 4); /* Compliant */

}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to
r = (1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2)
* (3 + 4). However, without parentheses, the program does not know the intended
expression. Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This
macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.8

6-265

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.4

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-266

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value
might not meet developer expectations.

Message in Report

Identifier is not defined.

Examples

Macro Identifiers

#if M == 0 /* Non-compliant - Not defined */

#endif

#if defined (M) /* Compliant - M is not evaluate */

#if M == 0 /* Compliant - M is known to be defined */

#endif

#endif

#if defined (M) && (M == 0) /* Compliant

 * if M defined, M evaluated in (M == 0) */

 MISRA C:2012 Rule 20.9

6-267

#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-268

MISRA C:2012 Rule 20.10
The# and ## preprocessor operators should not be used

Description

Rule Definition

The# and ## preprocessor operators should not be used.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to predict
the result of macro expansion.

The use of ## can result in obscured code.

Message in Report

The # and ## preprocessor operators should not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 20.10

6-269

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-270

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition

A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report

The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Examples

Use of # and ##

#define A(x) #x /* Compliant */

#define B(x, y) x ## y /* Compliant */

#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

 MISRA C:2012 Rule 20.11

6-271

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

6 MISRA C 2012

6-272

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition

A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators.

Rationale

The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is
itself subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report

Expanded macro parameter param1 is also an operand of op operator.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.13

6-273

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You can use a preprocessing directive to conditionally exclude source code until it
encounters a corresponding #else, #elif, #endif directive. If your compiler does not
detect a malformed or invalid preprocessing directive inside excluded source code, more
code than you intended to excluded.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report

Directive is not syntactically meaningful.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

6 MISRA C 2012

6-274

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

6-275

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report

• ‘#else' not within a conditional.
• ‘#elsif' not within a conditional.
• ‘#endif' not within a conditional. unterminated conditional directive.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

6 MISRA C 2012

6-276

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 21.1

6-277

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition

#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale

Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library
• Macro names described in the C Standard Library as being defined in a standard

header.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Examples

Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */

#define _Guard_H 1 /* Non-compliant - begins with _ */

#undef _ BUILTIN_squrt /* Non-compliant - implementation may

6 MISRA C 2012

6-278

 * use _BUILTIN_sqrt for other purposes,

 * e.g. generating a sqrt instruction */

#define defined /* Non-compliant - reserved identifier */

#define errno my_errno /* Non-compliant - library identifier */

#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include

 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 20.4

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.2

6-279

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition

A reserved identifier or macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Specification

• If you define a macro name that corresponds to a standard library macro, object, or
function, rule 21.1 is violated.

• The rule considers tentative definitions as definitions.

Polyspace Specification

Message in Report

Identifier 'XX' shall not be reused.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

6 MISRA C 2012

6-280

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.3

6-281

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition

The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale

Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Specification

If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report

• The macro <name> shall not be used.
• Identifier XX should not be used.

Examples

Use of malloc, calloc, realloc and free

#include <stdlib.h>

6 MISRA C 2012

6-282

static int foo(void);

typedef struct struct_1 {

 int a;

 char c;

} S_1;

static int foo(void) {

 _S_1 * ad_1;

 int * ad_2;

 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */

 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */

 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */

 free(ad_2); /* Non-compliant */

 free(ad_3); /* Non-compliant */

 return 1;

}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 18.7

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.3

6-283

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-284

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Specification

If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.4

6-285

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-286

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Specification

If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.5

6-287

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-288

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Specification

If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 21.6

6-289

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-290

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition

The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.7

6-291

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-292

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition

The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Specification

In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.8

6-293

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-294

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”

 MISRA C:2012 Rule 21.9

6-295

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-296

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.10

6-297

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

6 MISRA C 2012

6-298

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Examples

Use of Function in tgmath.h

#include <tgmath.h>

float f1,res;

void func(void) {

 res = sqrt(f1); /* Non-compliant */

 MISRA C:2012 Rule 21.11

6-299

}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {

 res = sqrtf(f1);

}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

7

Custom Coding Rules

7 Custom Coding Rules

7-2

Group 1: Files

Number Rule Applied Message generated if rule
is violated

Other details

1.1 All source file names
must follow the specified
pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. A source file is a
file that is not included.

1.2 All source folder names
must follow the specified
pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. A source file is a
file that is not included.

1.3 All include file names
must follow the specified
pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. An include file
is a file that is included.

1.4 All include folder names
must follow the specified
pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. An include file
is a file that is included.

 Group 2: Preprocessing

7-3

Group 2: Preprocessing

Number Rule Applied Message generated if rule
is violated

Other details

2.1 All macros must follow
the specified pattern.

The macro
“macro_name” does
not match the specified
pattern.

Macro names are checked
before preprocessing.

2.2 All macro parameters
must follow the specified
pattern.

The macro parameter
“param_name” does
not match the specified
pattern.

Macro parameters
are checked before
preprocessing.

7 Custom Coding Rules

7-4

Group 3: Type definitions

Number Rule Applied Message generated if rule
is violated

Other details

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer types
specified by typedef
statements. Does not
apply to enumeration
types. For example:
typedef signed int

int32_t;

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For example:
typedef float

f32_t;

3.3 All pointer types must
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer types
specified by typedef
statements. For example:
typedef int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array types
specified by typedef
statements. For example:
typedef int[3]

a_int_3;

3.5 All function pointer
types must follow the
specified pattern.

The function pointer
type “type_name” does
not match the specified
pattern.

Applies to function
pointer types specified
by typedef statements.
For example: typedef
void (*pf_callback)

(int);

 Group 4: Structures

7-5

Group 4: Structures

Number Rule Applied Message generated if rule
is violated

Other details

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct types must
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

4.3 All struct fields must
follow the specified
pattern.

The struct field
“field_name” does not
match the specified
pattern.

4.4 All struct bit fields
must follow the specified
pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

7 Custom Coding Rules

7-6

Group 5: Classes (C++)

Number Rule Applied Message generated if rule
is violated

Other details

5.1 All class names must
follow the specified
pattern.

The class tag
“tag_name” does not
match the specified
pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members must
follow the specified
pattern.

The data member
“member_name” does
not match the specified
pattern.

5.4 All function members
must follow the specified
pattern.

The function member
“member_name” does
not match the specified
pattern.

5.5 All static data members
must follow the specified
pattern.

The static data member
“member_name” does
not match the specified
pattern.

5.6 All static function
members must follow
the specified pattern.

The static
function member
“member_name” does
not match the specified
pattern.

5.7 All bitfield members
must follow the specified
pattern.

The bitfield
“member_name” does
not match the specified
pattern.

 Group 6: Enumerations

7-7

Group 6: Enumerations

Number Rule Applied Message generated if rule
is violated

Other details

6.1 All enumeration tags
must follow the specified
pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration types
must follow the specified
pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef name.

6.3 All enumeration
constants must follow
the specified pattern.

The enumeration
constant
“constant_name” does
not match the specified
pattern.

7 Custom Coding Rules

7-8

Group 7: Functions

Number Rule Applied Message generated if rule
is violated

Other details

7.1 All global functions
must follow the specified
pattern.

The global function
“function_name” does
not match the specified
pattern.

A global function is a
function with external
linkage.

7.2 All static functions must
follow the specified
pattern.

The static function
“function_name” does
not match the specified
pattern.

A static function is a
function with internal
linkage.

7.3 All function parameters
must follow the specified
pattern.

The function parameter
“param_name” does
not match the specified
pattern.

In C++, applies to non-
member functions.

 Group 8: Constants

7-9

Group 8: Constants

Number Rule Applied Message generated if rule
is violated

Other details

8.1 All global constants
must follow the specified
pattern.

The global constant
“constant_name” does
not match the specified
pattern.

A global constant is a
constant with external
linkage.

8.2 All static constants
must follow the specified
pattern.

The static constant
“constant_name” does
not match the specified
pattern.

A static constant is a
constant with internal
linkage.

8.3 All local constants must
follow the specified
pattern.

The local constant
“constant_name” does
not match the specified
pattern.

A local constant is a
constant without linkage.

8.4 All static local constants
must follow the specified
pattern.

The static local constant
“constant_name” does
not match the specified
pattern.

A static local constant is
a constant declared static
in a function.

7 Custom Coding Rules

7-10

Group 9: Variables

Number Rule Applied Message generated if rule
is violated

Other details

9.1 All global variables
must follow the specified
pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables must
follow the specified
pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables must
follow the specified
pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is a
variable without linkage.

9.4 All static local variables
must follow the specified
pattern.

The static local variable
“var_name” does not
match the specified
pattern.

A static local variable is
a variable declared static
in a function.

 Group 10: Name spaces (C++)

7-11

Group 10: Name spaces (C++)

Number Rule Applied Message generated if rule
is violated

Other details

10.1 All names paces must
follow the specified
pattern.

The name space “name
space_name” does not
match the specified
pattern.

7 Custom Coding Rules

7-12

Group 11: Class templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

11.1 All class templates must
follow the specified
pattern.

The class template
“template_name” does
not match the specified
pattern.

11.2 All class template
parameters must follow
the specified pattern.

The class template
parameter
“param_name” does
not match the specified
pattern.

 Group 12: Function templates (C++)

7-13

Group 12: Function templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

12.1 All function templates
must follow the specified
pattern.

The function template
“template_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.2 All function template
parameters must follow
the specified pattern.

The function
template parameter
“param_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.3 All function template
members must follow
the specified pattern.

The function
template member
“member_name” does
not match the specified
pattern.

8

Code Metrics

8 Code Metrics

8-2

Comment Density

Ratio of number of comments to number of statements

Description

The metric specifies the ratio of comments to statements expressed as a percentage.

Multi-line comments are counted as one comment. A statement typically ends with
a semi-colon with some exceptions. Exceptions include semi-colons in for loops or
structure field declarations.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Comment Density Calculation

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

struct record dataBase[100];

struct record fetch(void);

void remove(int);

void maintenanceRoutines() {

// This function implements

// regular maintenance on an internal database

 int i;

 struct record tempRecord;

 Comment Density

8-3

 for(i=0; i <100; i++) {

 tempRecord = fetch(); // This function fetches a record

 // from the database

 if(tempRecord.isEmployed == 0)

 remove(i); // Remove employee record

 //from the database

 }

}

In this example, the comment density is 38. The calculation is done as follows:

Code Running Total
of Comments

Running Total
of Statements

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

0 1

struct record dataBase[100];

struct record fetch(void);

void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements

// regular maintenance on an internal database
1 4

int i;

struct record tempRecord;
1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This

 function fetches a record

 // from the database

2 7

if(tempRecord.isEmployed == 0)

 remove(i);

 // Remove employee record

 //from the database

 }

}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

8 Code Metrics

8-4

Metric Information
Category: File
Acronym: COMF

 Cyclomatic Complexity

8-5

Cyclomatic Complexity
Number of linearly independent paths through source code

Description

This metric specifies the number of linearly independent paths through the source code.

To calculate this metric, add 1 to the number of decision points in your code. A decision
point is a statement that causes your program to branch into two paths. For example, at
an if statement, your program can either enter the if branch or not.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to limit
the value of this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag;

 if (x <= 0)

 /* Decision point 1*/

 flag = 1;

 else

 {

 if (x < y)

 /* Decision point 2*/

 flag = 1;

 else if (x==y)

 /* Decision point 3*/

 flag = 0;

 else

 flag = -1;

8 Code Metrics

8-6

 }

 return flag;

}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator

int foo (int x, int y) {

 if((x <0) ||(y < 0))

 /* Decision point 1*/

 return 0;

 else

 return (x > y ? x: y);

 /* Decision point 2*/

}

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement

#include <stdio.h>

int foo(int x,int y, int ch)

{

 int val = 0;

 switch(ch) {

 case 1:

 /* Decision point 1*/

 val = x + y;

 break;

 case 2:

 /* Decision point 2*/

 val = x - y;

 break;

 default:

 printf("Invalid choice.");

 }

 return val;

}

In this example, the cyclomatic complexity of foo is 3.

 Cyclomatic Complexity

8-7

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Decision point 1*/

 count = 1;

 else

 while(x>y) {

 /* Decision point 2*/

 x--;

 if(count< bound) {

 /* Decision point 3*/

 count++;

 }

 }

 return count;

}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Category: Function
Acronym: VG

8 Code Metrics

8-8

Language Scope
Language scope

Description

This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.
• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The recommended upper limit for this metric is 10. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Language Scope Calculation

int f(int i)

{

 if (i == 1)

 return i;

 else

 return i * g(i-1);

}

In this example:

• N1 = 17.

 Language Scope

8-9

• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

Metric Information
Category: Function
Acronym: VOCF

8 Code Metrics

8-10

Estimated Function Coupling

Measure of complexity between levels of call tree

Description

This metric is defined as (number of call occurrences – number of function definitions +
1). The metric provides an approximate measure of complexity between different levels of
the call tree.

Examples

Same Function Called Multiple Times

void checkBounds(int *);

int getUnboundedValue();

int getBoundedValue(void) {

 int num = getUnboundedValue();

 checkBounds(&num);

 return num;

}

void main() {

 int input1=getBoundedValue(), input2= getBoundedValue(), prod;

 prod = input1 * input2;

 checkBounds(&prod);

}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the estimated function coupling is 5 – 2 + 1 = 4.

 Estimated Function Coupling

8-11

Metric Information
Category: File
Acronym: FCO

See Also
Number of Call Occurrences

8 Code Metrics

8-12

Number of Call Levels

Maximum depth of nesting of contol flow structures

Description

This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function with no control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag = 0;

 if (x <= 0)

 /* Call level 1*/

 flag = 1;

 else

 {

 if (x <= y)

 /* Call level 2*/

 flag = 1;

 else

 flag = -1;

 }

 return flag;

}

In this example, the number of call levels of foo is 2.

 Number of Call Levels

8-13

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Call level 1*/

 count = 1;

 else

 while(x>y) {

 /* Call level 2*/

 x--;

 if(count< bound) {

 /* Call level 3*/

 count++;

 }

 }

 return count;

}

In this example, the number of call levels of foo is 3.

Metric Information
Category: Function
Acronym: LEVEL

8 Code Metrics

8-14

Number of Call Occurrences
Number of calls in function body

Description

This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop

#include<stdio.h>

void fillArraySize10(int *arr) {

 for(int i=0; i<10; i++)

 arr[i]=getVal();

}

int getVal(void) {

 int val;

 printf("Enter a value:");

 scanf("%d", &val);

 return val;

 Number of Call Occurrences

8-15

}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Category: Function
Acronym: NCALLS

See Also
Number of Called Functions

8 Code Metrics

8-16

Number of Called Functions
Number of callees of a function

Description

This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 Number of Called Functions

8-17

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Category: Function
Acronym: CALLS

See Also
Number of Call Occurrences | Number of Calling Functions

8 Code Metrics

8-18

Number of Calling Functions
Number of distinct callers of a function

Description

This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Same Function Calling a Function Multiple Times

#include <stdio.h>

int getVal() {

 int myVal;

 printf("Enter a value:");

 scanf("%d", &myVal);

 return myVal;

}

int func() {

 int val=getVal();

 if(val<0)

 return 0;

 else

 return val;

}

int func2() {

 Number of Calling Functions

8-19

 int val=getVal();

 while(val<0)

 val=getVal();

 return val;

}

In this example, the number of calling functions for getVal is 2. The calling functions
are func and func2.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of calling functions for fibonacci is 2. The calling
functions are main and fibonacci itself.

Metric Information
Category: Function
Acronym: CALLING

See Also
Number of Called Functions

8 Code Metrics

8-20

Number of Direct Recursions
Number of instances of a function calling itself directly

Description

This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If no
indirect recursions occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

Note: This metric is available only in the Polyspace Metrics web interface.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

}

In this example, the number of direct recursions is 1.

 Number of Direct Recursions

8-21

Metric Information
Category: Project
Acronym: AP_CG_DIRECT_CYCLE

8 Code Metrics

8-22

Number of Executable Lines
Number of executable lines in function body

Description

This metric measures the number of executable lines in a function body. When
calculating the value of this metric, Polyspace excludes declarations without static
initializers, comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

• The declaration int sign;.

 Number of Executable Lines

8-23

• The comment /* ... */.
• The two lines with braces only.

Metric Information
Category: Function
Acronym: FXLN

See Also
Number of Lines Within Body | Number of Instructions

8 Code Metrics

8-24

Number of Files
Number of source files

Description

This metric calculates the number of source files in your project.

Note: This metric is available only in the Polyspace Metrics web interface.

Metric Information
Category: Project
Acronym: FILES

See Also
Number of Header Files

 Number of Function Parameters

8-25

Number of Function Parameters
Number of function arguments

Description

This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Fixed Arguments

int initializeArray(int* arr, int size) {

}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments

int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {

}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments

double average (int num, ...)

{

 va_list arg;

8 Code Metrics

8-26

 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)

 {

 sum += va_arg (arg, double);

 }

 va_end (arg);

 return sum / num;

}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Category: Function
Acronym: PARAM

 Number of Goto Statements

8-27

Number of Goto Statements
Number of goto statements

Description

This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with goto Statements

#define SIZE 10

int initialize(int **arr, int loc);

void printString(char *);

void printErrorMessage(void);

void printExecutionMessage(void);

int main()

{

 int *arrayOfStrings[SIZE],len[SIZE],i;

 for (i = 0; i < SIZE; i++)

 {

 len[i] = initialize(arrayOfStrings,i);

 }

 for (i = 0; i < SIZE; i++)

 {

 if(len[i] == 0)

 goto emptyString;

 else

8 Code Metrics

8-28

 goto nonEmptyString;

 loop: printExecutionMessage();

 }

emptyString:

 printErrorMessage();

 goto loop;

nonEmptyString:

 printString(arrayOfStrings[i]);

 goto loop;

}

In this example, the function main has 4 goto statements.

Metric Information
Category: Function
Acronym: GOTO

 Number of Header Files

8-29

Number of Header Files
Number of header files

Description

This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted. Polyspace internal header files and header
files included by those files are also counted.

Note: This metric is available only in the Polyspace Metrics interface.

Metric Information
Category: Project
Acronym: INCLUDES

See Also
Number of Files

8 Code Metrics

8-30

Number of Instructions
Number of instructions per function

Description

This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Calculation of Number of Instructions

int func(int* arr, int size) {

 int i, countPos=0, countNeg=0, countZero = 0;

 for(i=0; i<size; i++) {

 if(arr[i] >0)

 countPos++;

 else if(arr[i] ==0)

 countZero++;

 else

 countNeg++;

 }

}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0

2 countNeg=0

3 countZero=0

4 for(i=0;i<size;i++) { ... }

5 if(arr[i] >=0)

6 countPos++

 Number of Instructions

8-31

7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++

9 countNeg++

Note: This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.

• The following code has 1 instruction but 3 executable lines.
for(i=0;

 i<size;

 i++)

Metric Information
Category: Function
Acronym: STMT

8 Code Metrics

8-32

Number of Lines
Total number of lines in a file

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

Metric Information
Category: File
Acronym: TOTAL_LINES

See Also
Number of Lines Without Comment

 Number of Lines Within Body

8-33

Number of Lines Within Body
Number of lines in function body

Description

This metric calculates the number of lines in function body. When calculating the value
of this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 13. The calculation
includes:

• The declaration int sign;.

8 Code Metrics

8-34

• The comment /* ... */.
• The two lines with braces only.

Metric Information
Category: Function
Acronym: FLIN

See Also
Number of Executable Lines

 Number of Lines Without Comment

8-35

Number of Lines Without Comment
Number of lines of code excluding comments

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

Metric Information
Category: File
Acronym: LINES_WITHOUT_CMT

See Also
Number of Lines

8 Code Metrics

8-36

Number of Paths
Estimated static path count

Description

This metric measures the number of paths through your source code.

If there are goto statements in your code, Polyspace cannot calculate the number of
paths.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is both difficult to read and can cause more orange checks. Therefore, try to limit the
value of this metric.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with One Path

void func(int ch) {

 switch (ch)

 {

 case 1:

 case 2:

 case 3:

 case 4:

 default:

 }

}

In this example, func has 1 path.

Function with Multiple Paths

void func(int ch) {

 switch (ch)

 Number of Paths

8-37

 {

 case 1:

 break;

 case 2:

 break;

 case 3:

 break;

 case 4:

 break;

 default:

 }

}

In this example, func has 5 paths. Apart from the path that goes through all the cases
and default, each break causes the creation of a new path.

Metric Information
Category: Function
Acronym: PATH

8 Code Metrics

8-38

Number of Return Statements
Number of return statements in a function

Description

This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If there is one return statement, when
reading the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Function with Return Points

int getSign (int arg) {

 if(arg <0)

 return -1;

 else if(arg > 0)

 return 1;

 return 0;

}

In this example, getSign has 3 return statements.

Metric Information
Category: Function
Acronym: RETURN

 Number of Recursions

8-39

Number of Recursions
Number of call graph cycles over one or more functions

Description
This metric specifies the number of recursions in your project. Even if more than one
function is involved in one recursive cycle, the number of recursions is counted as one.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics, see “Review Code Metrics”.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

8 Code Metrics

8-40

Indirect Recursion with One Call Graph Cycle

volatile int signal;

void operation1() {

 int stop = signal%2;

 if(!stop)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of recursions is 1. Although two functions operation1 and
operation2 indirectly call themselves, they are involved in the same call graph cycle
operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Indirect Recursion with Two Call Graph Cycles

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation2();

 else if(stop==2)

 operation3();

}

void operation2() {

 operation1();

}

void operation3() {

 Number of Recursions

8-41

 operation3();

}

void main() {

 operation1();

}

In this example, the number of recursions is 2.

There are two call graph cycles:

• operation1 → operation2 → operation1
• operation1 → operation3 → operation1

Same Function Called in Direct and Indirect Recursion

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation1();

 else if(stop==2)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of call graph cycles is 1.

If the same function calls itself both directly and indirectly, the two cycles are counted as
1.

Metric Information
Category: Project

8 Code Metrics

8-42

Acronym: AP_CG_CYCLE

